

NIH Workshop on Cloud-Based Platforms Interoperability

Welcome to Day 1...

NIH Cloud Platforms Interoperability Fall 2021 Workshop

We'll be starting shortly!

NIH Workshop on Cloud-Based Platforms Interoperability

Welcome

Stan Ahalt, Patrick Patton

Virtual Meeting Roles (Patton)

Role	Purpose	Assignee & Slack		
Maestro: Mute Master, Raised-Hand Monitor, & Security	Master of Zoom Ceremonies. Contact Amanda for questions about Zoom issues, breakout rooms, or other general questions or if you notice suspicious activity.	@Amanda Miller (amiller@renci.org)		
Screen Sharing	Will share screen and advance slides.	@Julie Hayes		
Slide Content	Will update slide content throughout the meeting.	@Sarah Davis		
Moderator	Moderator listed for each agenda item. Moderator will prompt slide transitions during presentations and foster productive conversation during discussions.	Becky Boyles (@rboyles)	Stan Ahalt (@stan)	
Plenary Notetakers	All are encouraged to add comments to the <u>Homepage and Meeting Notes</u>	@Patrick Patton	@Joe Asare @Tom Madden @John Cheadle	
Q&A Monitor	Monitor questions in #oct_workshop Slack channel as well as Zoom Chat. Share Action Items, Decisions, and Outstanding Questions from Slack and Zoom to the Homepage and Meeting Notes	- @Patrick Patton @Paul Kerr @Allie Gartland-Gray		
Time Watcher	Will try to keep us on time while still allowing room for important conversations.	@Sarah Davis		

Questions during the event? (Patton)

Verbal Questions: There will be time for questions throughout the meeting. If you want to verbally ask a question, use the Zoom feature to "raise your hand" and the host will enable your audio and then call on you to ask your question.

Zoom Chat: You can type questions via Zoom Chat throughout the meeting. Paul Kerr, Patrick Patton, Joe Asare, Allie Gartland-Gray, Tom Madden and John Cheadle will share questions from Slack and Zoom chat into the Homepage and Meeting Notes.

Slack: Questions can be asked throughout the meeting by using the <u>#oct_workshop</u> Slack channel. We encourage anyone to write questions, comments, answers, or discussion in Slack at any time. If you have not received an invitation to <u>#oct_workshop</u>, please email <u>amiller@renci.org</u>.

The latest version

Want the ability to move independently between breakout sessions?

We updated the meeting settings to allow attendees to move freely between the breakout rooms. **This setting requires the latest version of Zoom.**

- Follow these instructions or
- Watch this how-to video here: https://youtu.be/E7zERcVLUBM

BDC3 will reach out to attendees who have not yet registered to ensure they <u>register</u> <u>via the form</u> (<u>bit.ly/NCPI2021_Register</u>).

Note that future invitation lists are determined using past registration lists.

BDCatalyst Statement of Conduct (Ahalt)

The BioData Catalyst Consortium is dedicated to **providing a** harassment-free experience for everyone, regardless of gender, gender identity and expression, age, sexual orientation, disability, physical appearance, body size, race, or religion (or lack thereof). We do not tolerate harassment of community members in any form. Sexual language and imagery is generally not appropriate for any venue, including meetings, presentations, or discussions.

Community Rules of Engagement (Ahalt)

BDCatalyst "Santa Cruz Rules of Engagement":

- Do not shy away from identifying problems & risks
- Be candid
- Be heard
 - Identify an ally or motivate via Slack
 - Reach out to a Contact for particular topic(s) Slack or email <u>bdc3@renci.org</u> if you don't know the Contact

Be polite

- If you are a "talker" remember to give others time/space to talk if you are "quiet", take advantage of any opening
- Add your comments/ideas to notes if you don't find space to talk!

NIH Workshop on Cloud-Based Platforms Interoperability

Connecting Data, Enhancing Software...What Does a Data Ecosystem Look Like?

Susan Gregurick

NIH Workshop on Cloud-Based Platforms Interoperability

Goals Day 1:

Calibrate, Catalog, Identify Gaps/Challenges

Stan Ahalt

NCPI: Marking Progress (Ahalt)

• 2-years since first NCPI meeting in Chapel Hill, which focused on brainstorming the world of potential activities.

Since then... (Ahalt)

- 5 working groups moving forward on policy and development
- Multiple use cases driving progress
 - E.g. BDCatalyst used funds from ODSS and NHLBI to support development of interoperable AuthZN methods, search capabilities, semantic harmonization, and cross-platform compute on Kids First and AnVIL
 - More updates on driving use cases on Day 2

See all the good work accomplished to date in the Working Group Executive Summaries.

Addressing NIH/ODSS Goals (Ahalt)

What Does a Data Ecosystem Look Like?

Data, Software enhanced to support the FAIR and CARE Principles

Plan prospectively on how you will handle data;

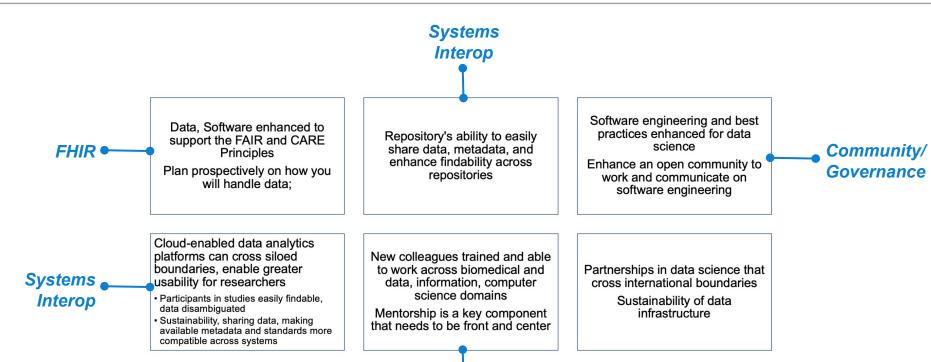
Repository's ability to easily share data, metadata, and enhance findability across repositories Software engineering and best practices enhanced for data science

Enhance an open community to work and communicate on software engineering

Cloud-enabled data analytics platforms can cross siloed boundaries, enable greater usability for researchers

- Participants in studies easily findable, data disambiguated
- Sustainability, sharing data, making available metadata and standards more compatible across systems

New colleagues trained and able to work across biomedical and data, information, computer science domains

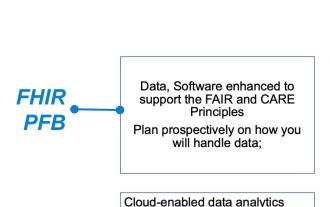

Mentorship is a key component that needs to be front and center

Partnerships in data science that cross international boundaries
Sustainability of data infrastructure

NCPI Working Groups (Ahalt)

Training/ Outreach

Workshop Goals: Getting to "done" (Ahalt)



- Meeting Agenda is focused on actionable key topics to help reach the ODSS goals
 - RAS
 - o PFB
 - o FHIR
 - End User Cloud Costs
 - Search
- Catch-all Other Interoperability Efforts gathers other activities that we are working on and what's coming next

Key Topics (Ahalt)

Repository's ability to easily share data, metadata, and enhance findability across repositories

Search

Software engineering and best practices enhanced for data science

Enhance an open community to work and communicate on software engineering

platforms can cross siloed boundaries, enable greater RAS usability for researchers **PFB** · Participants in studies easily findable,

- data disambiguated
- · Sustainability, sharing data, making available metadata and standards more compatible across systems

New colleagues trained and able to work across biomedical and data, information, computer science domains

Mentorship is a key component that needs to be front and center

Partnerships in data science that cross international boundaries

Sustainability of data infrastructure

Workshop Goals: Getting to "done" (Ahalt)

- How can we move the needle forward on each key topic?
- What is the status of use cases driving progress?
- Where are the gaps for these topics that might need new use cases?
- What are policy and development blockers and how can we unblock them?
- What are the next key pieces that will help reach NIH goals?

Agenda: Day 1 All times ET (Ahalt)

Time	Activity	Owner	Links
11:00-11:05am	Welcome	Stan Ahalt, Patrick Patton	Slides Notes
11:05-11:40am	Connecting Data, Enhancing SoftwareWhat Does a Data Ecosystem Look Like?	Susan Gregurick	Slides Notes
11:40-11:50am	Goals Day 1: Calibrate, Catalog, Identify Gaps/Challenges	Stan Ahalt	Slides Notes
11:50 -12:15pm	Demo of Successful Federated Use Case (from search to FHIR to workspace)	Brian O'Connor, Jack DiGiovanna, Robert Carroll	Slides Notes
12:15-1:00pm	Updates on Key Topics (Part 1) •PFB (10 min) (Grossman) •FHIR (15 min) (Carroll) •RAS (20 min) (O'Connor)	Moderator: Becky Boyles	Slides Notes
1:00-1:45pm	Lunch Break		
1:15-1:45pm	Lunch Breakout 1: Discuss Gaps and Decide on Concrete Next Steps •RAS and data access (O'Connor)	Brian O'Connor	Slides Notes
1:45-2:35pm	Updates on Key Topics (Part 2) •End-User Cloud Costs (20 min) (Schatz) •Search (20 min) (Rogers) •Other Interoperability Efforts (10 min) (Ahalt)	Moderator: Becky Boyles	Slides Notes
2:35-3:05pm	Breakout Session 2: Discuss Gaps and Decide on Concrete Next Steps •PFB (VanTol) and FHIR (Carroll) •Other Interoperability Efforts (Ahalt) Break	Robert Carroll, Stan Ahalt	Slides Notes
3:10-3:15pm	Plan for Day 2	Becky Boyles	Slides Notes
3:10-4:00pm	Breakout Session 3: Discuss Gaps and Decide on Concrete Next Steps •End-user Cloud Costs (Schatz) •Search (Rogers) (EasyRetro)	Michael Schatz, David Rogers	Slides Notes
Day 2: Wednesd	ay, October 6		

Agenda: Day 2 All times ET (Ahalt)

Time	Activity	Owner	Links
11:00-11:10am	Welcome and Goals Day 2: Synthesize next steps, driving use cases, determine NIH/NCPI priorities	Stan Ahalt	Slides Notes
	Breakout Report Backs and Discussion •PFB (10 min) (Grossman) •FHIR (10 min) (Carroll) •RAS (20 min) (O'Connor) •End-User Cloud Costs (20 min) (Schatz) •Search (20 min) (Rogers)		
11:10-12:40pm	Other Interoperability Efforts (10 min) (Ahalt)	Moderator: Becky Boyles	Slides Notes
12:40-12:50pm	GA4GH Relationship	Brian O'Connor	Slides Notes
12:50-2:00pm	Lunch Break		
1:30pm-2:00pm	NIH Breakout: NIH Coordination Working Group Discussion of Priority Next Steps	NIH Only (via separate invitation)	
2:00-2:15pm	Use Case Overview: The Journey of a NCPI Use Case	Asiyah Lin	Slides Notes
2:15-3:20pm	Review of Current Scientific Use Cases	Moderator: Valentina Di Francesco	Slides Notes
2:15-2:30pm	Leveraging Functionally Equivalent Pipelines for Long-Read Data on Different Systems	Owen Hirschi	Slides Notes
2:30-2:50pm	Interoperability between Kids First & Undiagnosed Diseases Network (UDN) Data via dbGaP/SRA	Valerie Cotton, Allison Heath	Slides Notes
2:50-3:05pm	Genetic Sex as a Biological Variable and X-inactivation	Melissa Wilson	Slides Notes
3:05-3:20pm	Conducting reproducible science in PIC-SURE interoperating with Seven Bridges/Terra	Simran Makwana	Slides Notes
3:20-4:00pm	Synthesize Goals and Next Steps for the next 6 Months, with focus on driving use cases	Stan Ahalt, Jon Kaltman	<u>Slides Notes</u>

Meeting Deliverable: NCPI Glossary (Ahalt)

- While we often use the same words, we sometimes use them to mean different things.
- We hope this <u>Glossary</u> will be a concrete deliverable at the end of the meeting to help us coalesce around common definitions and/or highlight differences.
- Please review and add your definitions to listed words or add new words

Glossary

Metadata

Semantic

Search

API

Portal

Proof of Concept

Pilot

AuthN/AuthZ

Data Stewards

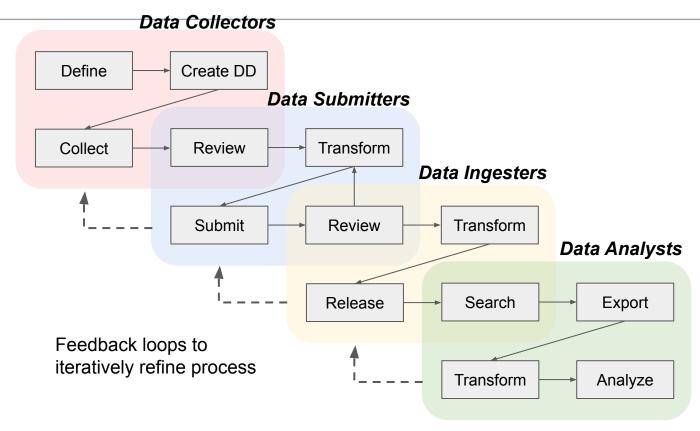
[Add your word here]

NIH Workshop on Cloud-Based Platforms Interoperability

Demo of Successful Federated Use Case:

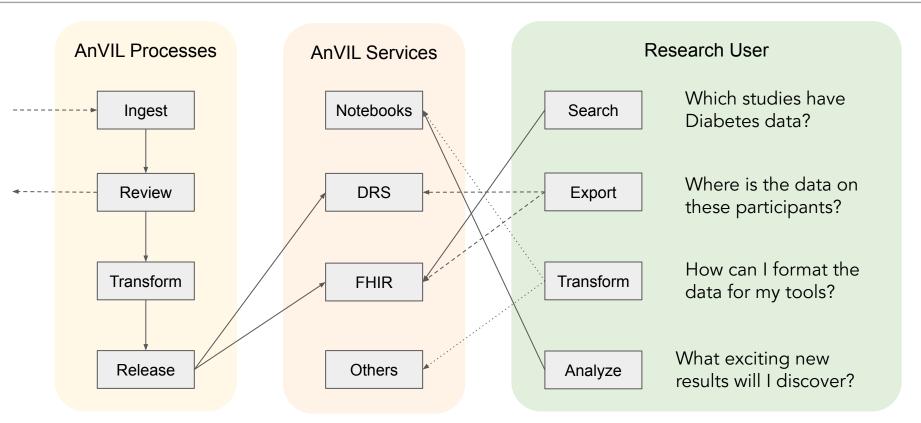
From Search to FHIR to Workspace

Brian O'Connor, Jack DiGiovanna, Robert Carroll


FHIR & Search

Data Access & Compute

Data Life Cycle

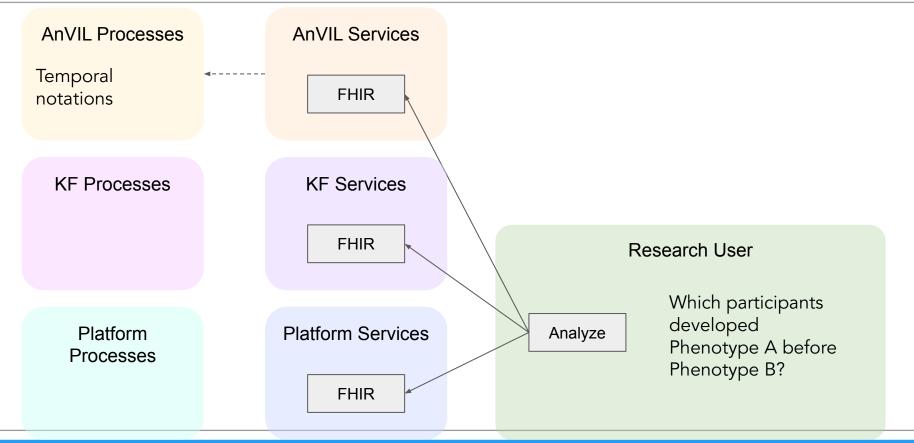


Platforms and Research Users

Study summary use cases

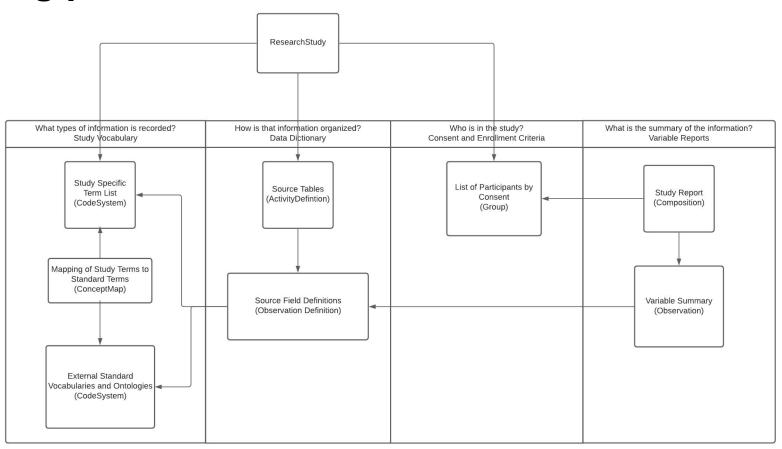
Research User **AnVIL Processes AnVIL Services** Term annotation Which studies have **FHIR** Search Study Summaries Diabetes data? **KF Services** KF Processes If the underlying studies do not have **FHIR** structured concepts, how does that affect the use case? What processes can we apply to assist? What tools can be implemented to help Platform Platform Services research users? Processes **FHIR**

Additional tool / service layers



NCPI Phenotype Research User **AnVIL Processes AnVIL Services** Translation Tool Term annotation **FHIR** Generate list of all NCPI Phenotype Generates list of Phenotypes for all Phenotypes participants A, B, C **KF Services** KF Processes **Transform FHIR** Analyze Platform Platform Services Processes **FHIR**

Platforms and Research Users



Representing Study Data

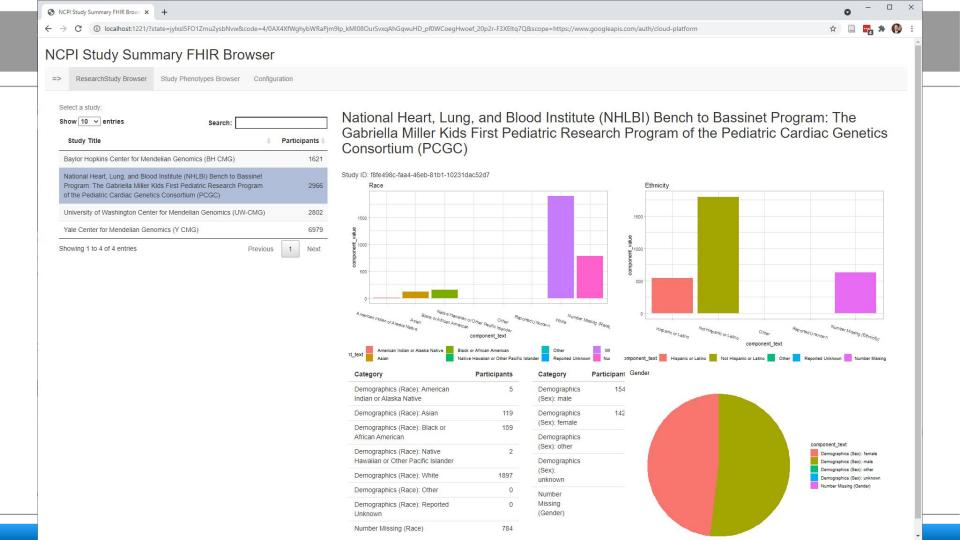
- Providing detailed study metadata is very important to understanding the data that's presented.
- dbGaP has set the standard for information that's available, and they are working towards "modernizing" the representation.
- This is currently organized in FHIR, but it's using a custom extension approach.
- We have built a proposal using more FHIR native approaches that should enable easy lift-over for existing data, programmatic definitions for new data, and structured links within the metadata.
- This model is developed in the context of researchers accessing existing research data.

Big picture

Summary Level Information

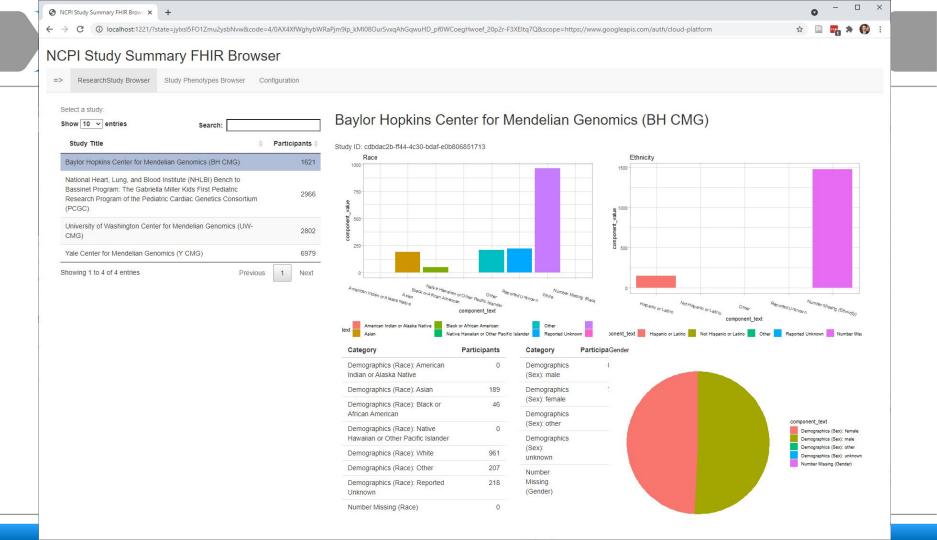
What Data Files are available?

What data do we have about a participant?


Who is in the study?

Products

- FHIR Example: https://github.com/anvilproject/DD-On-FHIR
- Study Summary Tool: <u>https://github.com/NIH-NCPI/ncpi-study-summary-generation-tool</u>
- Study Browser Tool: https://github.com/NIH-NCPI/ncpi-fhir-study-summary-browser



- Using the NCPI FHIR Implementation guide, we have several studies loaded into FHIR servers.
 - o AnVIL internal test server on Google Healthcare API
 - KF development server running Smiles CDR on AWS
- Eric Torstenson developed and ran a ResearchStudy summary tool, which generated summary objects that could be made available publicly.
- I've written a quick Shiny app that looks at those summaries to generate some interactive content.
- Live demo if possible

NCPI Study Summary FHIR Browser

ResearchStudy Browser Study Phenotypes Browser Configuration Phenotype Summary National Heart, Lung, and Blood Institute Show 10 v entries Search: (NHLBI) Bench to Bassinet Program: The Phenotype Phenotype Present Phenotype Absent Number Missing Phenotype Phenotype Reported Unknown Gabriella Miller Kids First Pediatric Conotruncal Left-sided Lesion 545 191 2230 Research Program of the Pediatric Cardiac Genetics Consortium (PCGC) 419 2230 Abnormal Ventricular Septum 309 337 396 2230 3 Abnormal Ventriculo-arterial Connection Study ID: f8fe498c-faa4-46eb-81b1-10231dac52d7 Abnormal Pulmonary Valve 301 421 2230 14 List of groups in this study: Abnormal Atrial Septum 291 365 2230 80 Show 10 v entries Search: Abnormal Aorta 285 387 2230 64 **Group Name** Participants | Abnormal Right Ventricle 243 491 2230 SD_PREASA7S-complete 2966 227 394 2230 115 Abnormal Aortic Valve Showing 1 to 1 of 1 entries Previous Next Abnormal Mitral Valve 194 539 2230 3 Left Ventricular Outflow Tract Obstruction 158 578 2230 Showing 1 to 10 of 367 entries 4 5 ... Previous

Genomics (BH CMG)

Study ID: cdbdac2b-ff44-4c30-bdaf-e0b806851713 List of groups in this study: Show 10 ∨ entries Search: **Group Name** Participants | HMB-IRB-NPU 804 HMB-NPU 817 BH_CMG-complete 1621 Showing 1 to 3 of 3 entries Next Previous

how 10 v entries			Search:	
Phenotype	\$ Phenotype Present +	Phenotype Absent	Number Missing Phenotype	
Global developmental delay	79	0	1542	
Scoliosis	76	0	154	
Joint laxity	61	0	1560	
Microcephaly	56	0	1568	
Hypotonia	51	0	1570	
Seizure	46	0	1575	
Expressive language delay	45	0	1576	
Decreased body weight	43	0	1578	
Proportionate short stature	40	0	158	
High palate	39	1	158	

Baylor Hopkins Center for Mendelian Genomics (BH CMG)

=> ResearchStudy Browser Study Phenotypes Browser

Showing 1 to 3 of 3 entries

 Study ID: cdbdac2b-ff44-4c30-bdaf-e0b806851713

 List of groups in this study:

 Show 10 → entries
 Search:

 Group Name
 Participants ♦

 HMB-IRB-NPU
 804

 HMB-NPU
 817

 BH_CMG-complete
 1621

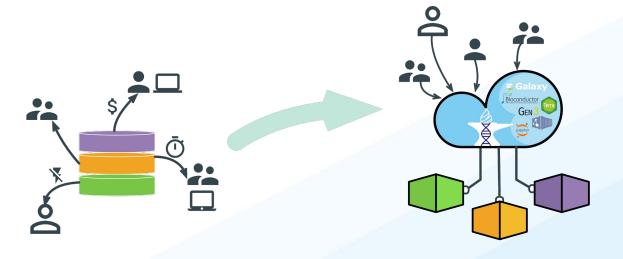
Configuration

Previous

Next

Phenotype	\$ Phenotype Present +	Phenotype Absent	Number Missing Phenotype
Global developmental delay	42	0	77:
Scoliosis	41	0	776
Microcephaly	34	0	783
Seizure	28	0	789
Intellectual disability	22	0	798
Expressive language delay	22	0	798
Peripheral neuropathy	22	0	798
Recurrent infections	21	0	796
Intellectual disability, moderate	15	0	802
Abnormality of the face	15	0	802

FHIR & Search


Data Access & Compute

Inverting the Model of Genomic Data Sharing

AnVIL, BioData Catalyst, CRDC, and GMKF have ~11PB of data accessible on the cloud for ~831K participants

Traditional: Bring data to the researcher

Goal: Bring researcher to the data

Schatz, Philippakis et al. (2021) bioRxiv. doi: https://doi.org/10.1101/2021.04.22.436044

NCPI Systems Interoperation WG

The <u>NCPI Systems</u> <u>Interoperation Working Group</u>

spearheads technical improvements to the NCPI participating cloud-based platforms that enable improved interoperability.

https://anvilproject.org/ncpi

Researcher Use Cases Driving Work

NCPI Systems Interoperation Working Group -- Use Cases

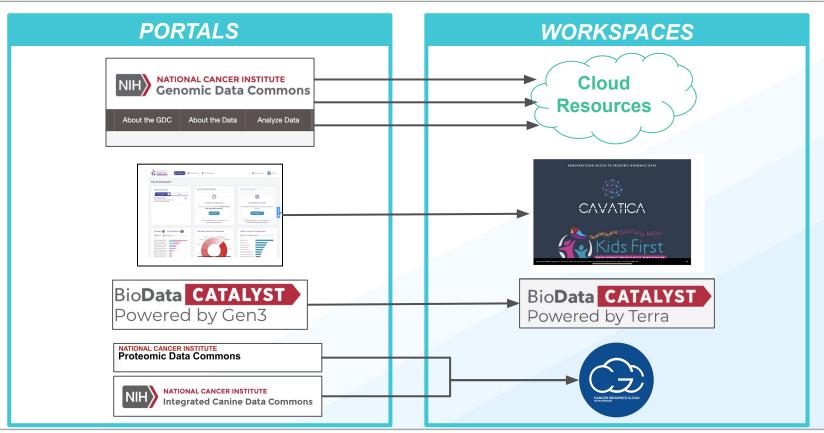
About

This is our document to capture new use cases as they emerge. Please add yours below.

The first five use cases can be found in the Systems Interoperation working group Charter.

Version 2.0.0 of the charter will cover our work in 2021.

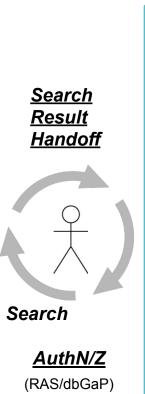
Version	Date	Description	
1.0.0	1/17/2020	Initial version, focused on establishing researcher use cases and work in progress. Approved by: CRDC – Tanja Davidsen Kids First – James Coulombe AnVIL – Ken Wiley and Valentina di Francesco BD Catalyst – Jonathan Kaltman (approved 1.0.0 on 1/21)	
2.0.0	1/2021	pending	

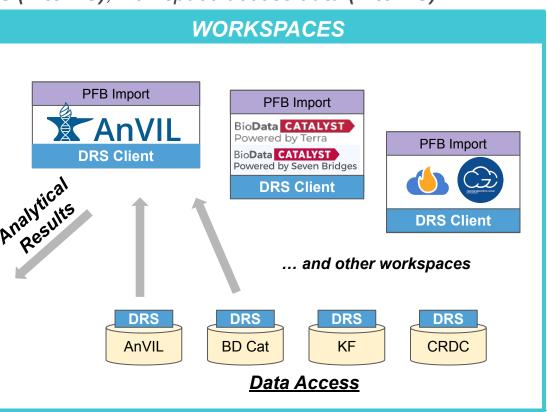

We worked with multiple researchers to define 11 driver use cases for our work

\

When NCPI Sys Interop Started (Jan 2020)

Data portals connect (intra-IC) with analysis systems (workspaces)




Our Vision for Interoperability

Data portals connect to any workspaces (inter-IC), workspace access data (inter-IC)

3 Key Standards in NCPI Systems Interop

Search Result Handoff:

PFB (FHIR and Manifests)

Data Access: GA4GH DRS

Auth: RAS GA4GH Passports for

AuthN/Z

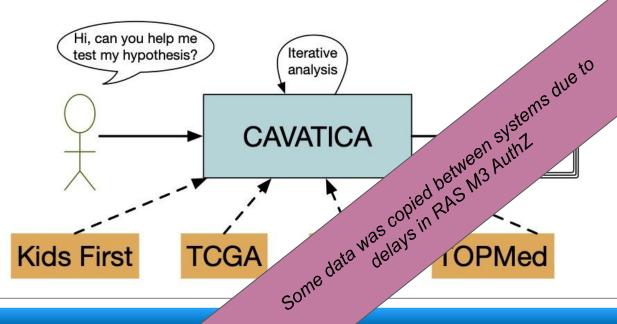
NCPI Sys Interop's Progress

2020

- MOUs/ISAs for RAS and system interconnects
- **PFB for data handoff from portals to workspaces** (BDCat & AnVIL)
- DRS for data access to AnVIL, BDCat, Kids First, and CRDC
- Progress on Researcher Use Cases

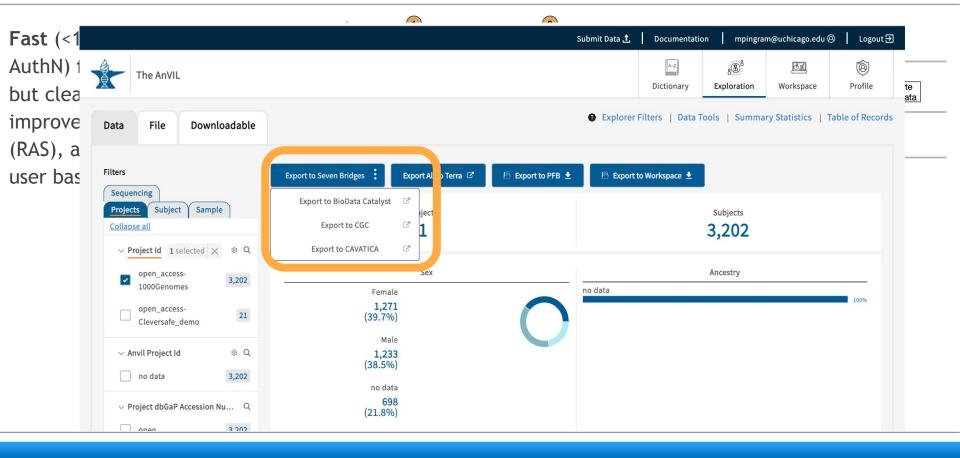
2021

- NIH RAS for authentication
- GA4GH standards evolved (Passports, DRS, etc)
- More systems working on PFB handoff (PDC)
- Prototyping FHIR → PFB bridge
- More workspaces supporting more DRS servers
- RAS Passports for Authorization designed
- Researcher Use Cases finishing/expanding


Use Case Success Stories

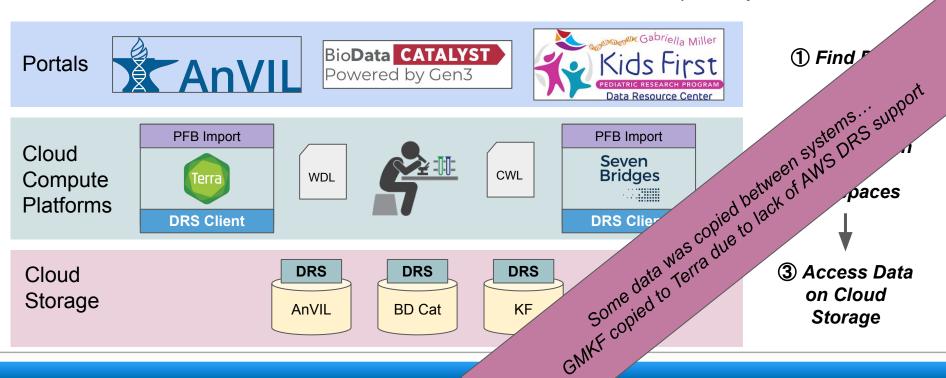
<u>Use Case #5</u>: Wilson McKerrow et al. LINE1 analysis on the CGC spanned Proteomics Data Commons, TCGA, and GTEx

Use Case #1B: Deanne Taylor et al. PCGC analysis on CAVATICA and BDC powered by SB spanned the PCGC data governed by Kids First and PCGC data governed by TOPMed.


Proof of concept: KF, TCGA, GTEx, and TOPMed data in CAVATICA April 2021

UX not yet optimal

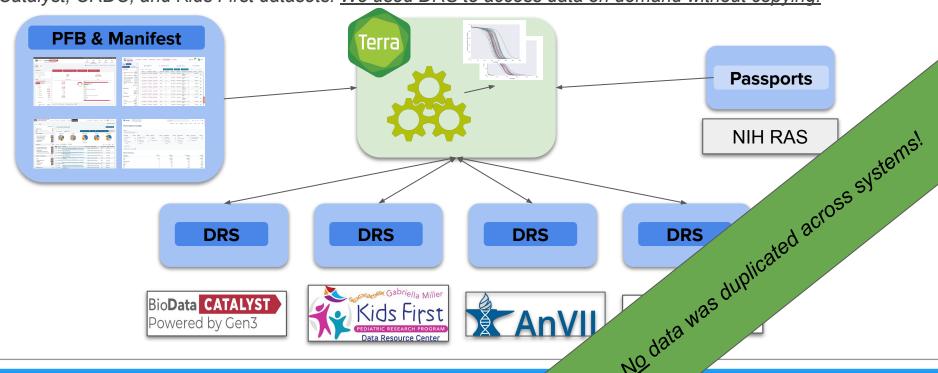
Improved UX



Use Case Success Stories

<u>Use Case #7</u>: Tim Majarian's cross dataset analysis for Congenital Heart Disease

"We performed an association analysis, interrogating the effect of rare exonic variation on CHD risk at a fraction of the cost that would have otherwise been incurred without these interoperability tools."

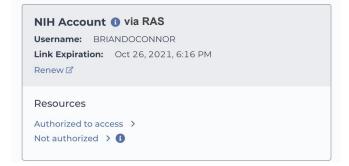


Our Latest Use Case Success Story

Use Case #11: Melissa Wilson's use case examining Sex as a Biological Variable

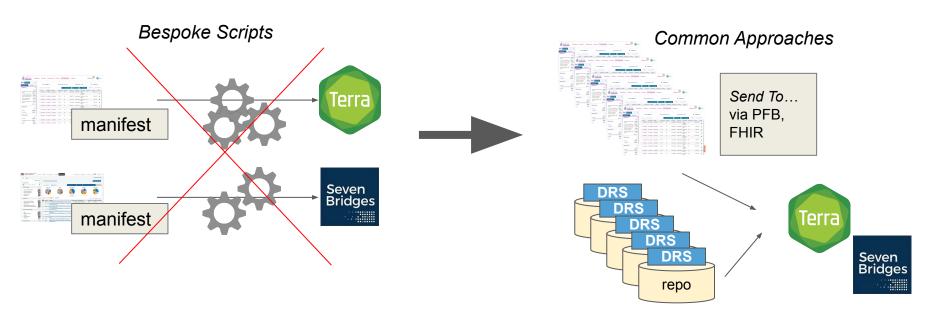
Assessing the state of X and Y chromosome calling, we created a Terra workspace referencing AnVIL, BioData Catalyst, CRDC, and Kids First datasets. <u>We used DRS to access data on demand without copying.</u>

Priorities for 2022


Finish RAS Milestone 3

Simplify connecting data source through single, RAS identity/authorization

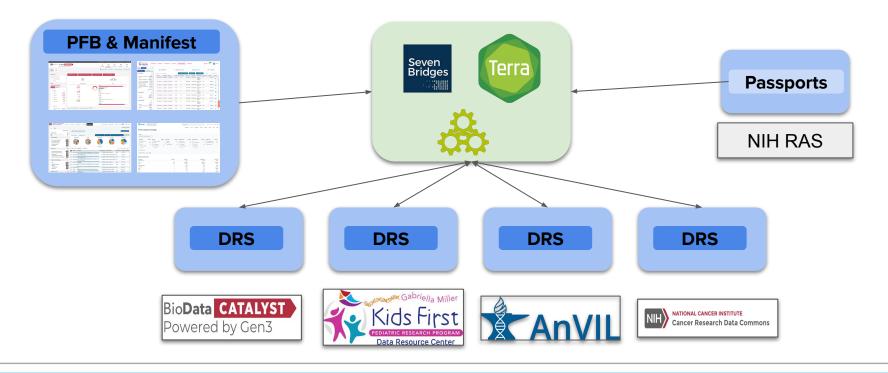
A single RAS-based account link



Priorities for 2022

Connect more portals + data repositories

Users love the ability to "send to..." a workspace, add to more portals, make it easy to add new data repositories



Priorities for 2022

Tell Users!

Work with Outreach to let users know they can work with 11PB of data in these platforms today!

NCPI Systems Interoperation WG

Thank you to everyone that has made NCPI Systems
Interoperation possible!!

Please consider joining our meetings, you can find more information at:

https://anvilproject.org/ncpi

NIH Workshop on Cloud-Based Platforms Interoperability

Updates on Key Topics Part 1 PFB, FHIR and RAS

Becky Boyles, Moderator

Reminder - What is PFB?

- The Portable Format for Biomedical Data (PFB) is a self-contained, self-describing, application independent **bulk format** for clinical, phenotype or other structured data.
- It is based upon Avro
- It encapsulates:
 - Data model / data dictionary
 - The bulk data itself
 - Pointers to third party controlled vocabularies for data elements
- It started based upon Gen3's graphical data model, but you can define PFB formats for **any data model**, relational, graph model, etc.
- For data versioning, support for multiple platforms and applications, long term support for data, it is helpful to have a self-contained bulk format

PFB - 1 (Grossman)

	Updates	Gaps/Next Steps
Gen3	 Gen3 is formulating a feature around functionality to allow external users to download study level PFBs via an API. The intent is to create a process to host PFB files that can be downloaded via DRS URIs externally existing data ingestion and submission would continue. An added ability to handoff PFBs would be available with this feature Working closely with other groups to improve interop testing and Quality around PFB handoffs Adding ability to export PFBs to 3 new destinations. These options will be provided in BioData Catalyst (export to export to CGC, CAVATICA, BDC powered by SBC) and in AnVIL (CGC and CAVATICA) supporting greater interoperability 	 Complete review of feature document and design for providing ability to download study level PFBs. Plan for work to implement. Continue commitment to Quality by supporting interop testing for various test cases around PFB handoffs.
Seven Bridges	Seven Bridges is developing interop solution to enable a user to send PFB from Gen3 systems outside of BioData Catalyst (like AnVIL) to BioData Catalyst Powered by Seven Bridges.	Pilot users to test the feature

PFB - 2 (Grossman)

	Updates	Gaps/Next Steps
Terra	 Terra currently supports PFB import from the AnVIL and BioData Catalyst data portals Continued support of PFB as additional portals support the convention, currently working with the PDC portal 	 Adding automation for ETL process of PFB in FHIR Adding automated transfer of PFB onto Healthcare API (FHIR)
Kids First	FHAVRO: A generic Java library for converting FHIR resources into Avro and vice-versa. Avro schemas are obtained from project's FHIR implementation guide. • Enable developers to manage FHIR resources using the well-established Avro software ecosystem (e.g. Spark, Kafka) • Open source: https://github.com/Ferlab-Ste-Justine/fhavro Apache License 2.0 • Current status: in active development	 Generating Avro schema from a profile Generating schema from NCPI implementation guide

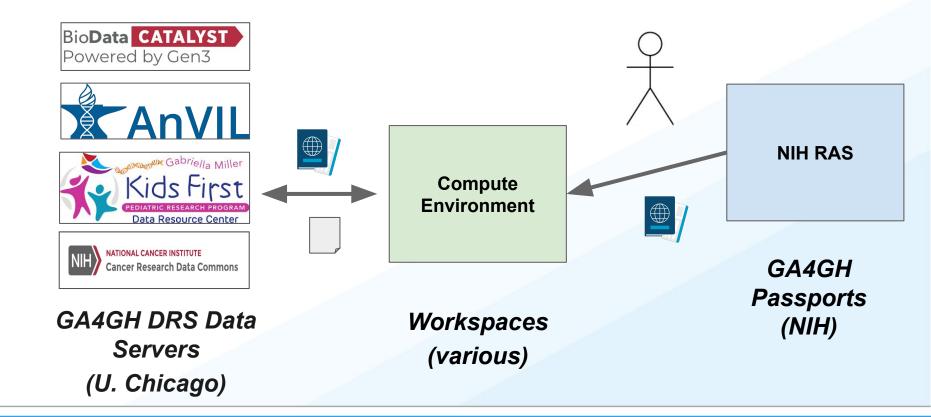
PFB - 3 (Grossman)

	Updates	Gaps/Next Steps
NCBI	NCBI pioneered portable genomic data in 2011 with VDB, the foundation of SRA storage. It is a	Gap: Having provided APIs to access VDB, many tool vendors have not yet updated.
	schema-driven columnar store with high compression, capable of representing any type of data, and organized into transportable units. The SRA uses these to model sequencing runs that was initially used across the INSDC.	Next Step: The VDB team is ready to guide tool vendors who are now willing to update in their adoption.
NCPI Outreach	Linking to documentation of PFB at https://anvilproject.org/ncpi/technologies	Keep PFB documentation up to date and expand as needed.

	Updates	Gaps/Next Steps
AnVIL	 FHIR Services Proof of concept AnVIL FHIR server setup Currently access only for AnVIL dev team as development continues FHIR Model Implemented transform to NCPI Model for CMG data Developed and implemented pilot release of a Study and Summary level model. REDCap FHIR module has been updated to support export resources at minimum requirements. 	 Wider release of FHIR server will need to wait until Terra picks up managed service for FHIR Team engaged with Terra engineering Project plan in place to create process to configure service and ensure authorization Continued onboarding of existing datasets Testing and refinement of Study and Summary level model
BDCatalyst	 Loaded four test datasets using Bulk FHIR and built data ingestion pipelines to test Bulk FHIR standard in PIC-SURE Prototyped FHIR server deployments in both the Google and Azure clouds Prototyped conversion of synthetic HL7v2 and C-CDA documents into FHIR using Azure tools Prototyped FHIR to PFB export 	 Continue to load appropriate data from FHIR sources in PIC-SURE Expand to use more real data sources and use cases (not test data) Longer term, ensure appropriate data is accessible via FHIR as determined by the BDCatalyst project.

	Updates	Gaps/Next Steps
Kids First	 NIH NCPI FHIR Implementation Guide: https://nih-ncpi.github.io/ncpi-fhir-ig/index.html Loaded five projects released on dbGap & KFDRC: Kids First: Enchondromatoses (SD_7NQ9151J): 285 Patients; 289 Specimens; 5,952 DocumentReferences Kids First: Congenital Heart Defects (SD_PREASA7S): 2,966 Patients; 2,987 Specimens; 16,506 DocumentReferences TARGET: Neuroblastoma (SD_YNSSAPHE): 277 Patients, 614 Specimens; 3,380 DocumentReferences Kids First: Familial Leukemia (SD_W0V965XZ): 620 Patients; 373 Specimens; 3,076 DocumentReferences Pediatric Brain Tumor Atlas - Children's Brain Tumor Tissue Consortium (SD_BHJXBDQK): 4,170 Patients; 48,240 Specimens; 43,004 DocumentReferences 	 Replicating dbGaP's ResearchSubject model especially for curating various aggregate counts Developing a genomics module for sequencing and genomic workflow using Task and Observation Sustainable AuthN/AuthZ: The current AuthN/AuthZ flow requires an expiry ALB cookie and the acquisition of a cookie needs to be done manually. We therefore plan to implement OAuth2/OIDC setup supported via Keycloak. Exploring RAS-FHIR integration with Kurt R (UDN use case) Pedigree: Observation vs FamilyMemberHistory Phenotype: Condition vs Observation

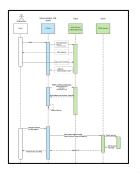
	Updates	Gaps/Next Steps
NCBI dbGaP API	Overview: 1800 Studies comprising approx. 3 million subjects, 370,000 variables and 2.5 billion observations. Study level meta-data: The NCBI dbGaP FHIR API provide access to all of dbGaP studies meta data. Users can search using multiple criteria including study title, sponsor, type (prospective, longitudinal, cohort, case-control), keyword, condition, and many others. https://dbgap-api.ncbi.nlm.nih.gov/fhir/x1/ResearchStudy Variable level data: An initial FHIR research database populated with synthetic data from a few representative studies is in place for the development team and some limited beta testers to better understand the technology and how to best represent dbGaP data as a collaboration with NLM Research Data Finder. RAS Integration: A working prototype of RAS access mechanisms is expected to be completed in Q1 FY22 for testing with dbGaP control-access consent group and to allow authorized users to reach de-identified research.	 Current work is scaling up the servers and test loading more than 200 million observations. The ultimate goal is to provide seamless access to all of dbGaP metadata and phenotypic observations. Continue development and testing to improve server performance.performance is a problem with big datasets such as dbGaP in native FHIR servers. Integration of RAS will continue to be challenging due to constraints working with existing databases with different authorization systems NCBI will continue to collaborate with LHC NLM to map and standardize the variable data. dbGaP variables have inconsistent and irregular labels that will require substantial effort to harmonize. Continue with integration coordination with NLM Research Data Finder https://lhcforms.nlm.nih.gov/fhir/research-data-finder/ and NCPI dataset catalog NCPI (anvilproject.org)



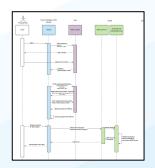
	Updates	Gaps/Next Steps
NCPI Outreach	Linking to documentation of FHIR at https://anvilproject.org/ncpi/technologies	Keep FHIR documentation up to date and expand as needed.

RAS Update

RAS Key Docs & Milestones

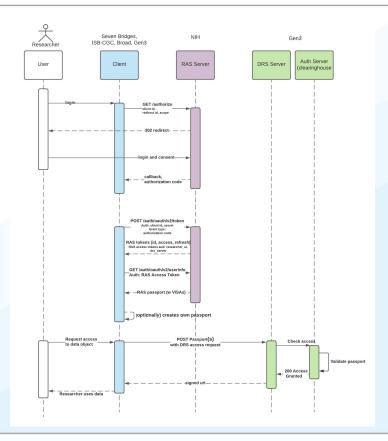

- RAS design work across a variety of teams and projects to date:
 - See: <u>RAS Authn/Authz "Milestone 3" Design with GA4GH Passports</u>
- Groups coordinated a 3 milestone plan:
 - o Milestone 1 : Login with RAS ☑
 - Milestone 2 : Gen3 uses RAS Visas as the authorization information instead of dbGaP telemetry files Skipping this
 - Milestone 3: RAS Passport Visas can be used directly to access data resources,
 Central Fence is enabled by consistency across IC stacks
 - → designed in Q2-Q3 and now on an implementation timeline

Summary of Milestone 3

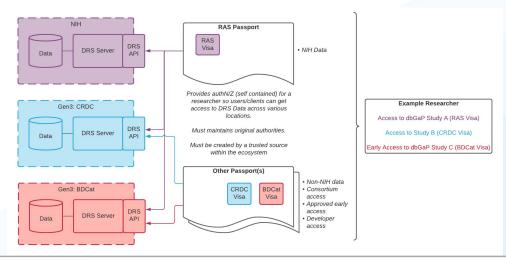


- We've worked with Kids First, CRDC, <u>AnVIL</u> and <u>BDCat</u> to converge on a common approach for Milestone 3
- We've tried to help by putting together a <u>summary of two preferred approaches</u> and collaboratively address concerns... goal is to add ability to access data with passports rather than taking away previous approach

1: Current Gen3 Approach


2: New Passport Approach

New Passports Approach


- Systems can interact with RAS directly, using RAS GA4GH Passports + Visas to access data from DRS data servers such as Gen3:
 - Client request RAS Passport directly from RAS
 - Client repackages Passport while keeping RAS Visas intact
 - Passport is passed to DRS server in DRS data access request
 - DRS verifies and sends back a signed url
- Significantly improves the user experience for interoperability across NIH IC "stacks" by requiring just a single "account linking" with RAS (instead of multiple as is done today)
- RAS Passport + Visas then open up datasets that the users are authorized to use across systems like AnVIL, BDCat, CRDC, and GMKF as approved by researchers' SO... this is transformative for interop!!

- Use the Passport from RAS unmodified (don't repackage)
 - Other passport brokers may use repackaged passports for developer/consortium access lists but don't mix with RAS visas
 - DRS 1.2 now supports sending multiple, complete passports in a DRS data access request

- Requirement for mutual TLS authentication for client verification
 - AnVIL, BioData Catalyst, CRDC, and GMKF indicated this is required

Platform	Policy Requires Client Verification
AnVIL	Yes
BioData Catalyst	Yes
CRDC	Yes
GMKF	Yes

Teams agreed to a timeline/plan

- Implementation of staging/dev by U. Chicago before end of 2021
- Workspace platforms implementing/testing by end of Q1 2022
- See signatures of platform architects, POs, and security team members

		,	
3.2*	Use RAS V1.1+ Passports for Data Access at DRS Servers *This is a <u>significant architecture change</u> . including • API Level Support for acceptance and validation of v1.1 passport(s) against DRS API as an alternate	Clients can POST the full RAS v1.1 Passport to get controlled-access data from a DRS endpoint Gen3 DRS Server uses GA4GH claims clearinghouse to validate unmodified RAS passports and visas for authorization decisions	See below for 3.2.1 and 3.2.3 target dates
	means of authentication and authorization Parsing, validation, and interpretation of visas contained within v1.1 Passport(s) for means of realting authorization upon data access requests Caching support for scalability of average researcher workflows supporting thousands of data access requests in a short time frame Final authorization decision by clearinghouse by aggregating information from parsing/interpretation of passport(s)/visa(s) and making a decision for controlled access data		
3.2.1	Minimum Viable Product with support for RAS V1.1 Passports in Gen3 DRS endpoints *does not include full integration tests nor performance support. These are usually performed before	Stand up a development environment for clients to connect to, populated with mock control NIH data An Mv7 deployment into respective development environment for clients of Gen3 to test respective flows (i.e. authorized users based on passport are returned a signed URL to data)	Target Date: 12/07/21
	rolling to environments		
3.2.2	Load testing and profiling of 3.2.1 support	Validate performance is comparable to current support via OIDC and OAuth 2 tokens	Start date 12/1/21
3.2.3	Performance improvements based on results of 3.2.2 and subsequent load testing	Performance improvements to ensure support is comparable to current support, as done via OIDC and OAuth 2 tokens	Target Date 02/18/22
3.3	Mutual TLS Support as a mechanism for client authentication for controlled egress	Client authentication so that systems know which client is presenting the RAS Passport to their DRS endpoint This is a system requirement for AnVIL and BDC This support is not a RAS requirement but it is RAS recommended	Target Date: 12/17/21

- U. Chicago has shared a detailed technical plan with the RAS and other teams
 - Milestone 2 not needed
 - Gen3 plan needed for building clearinghouse function in G3FS
 - "The RAS team does not need to review another version of this technical planning document.
 - We are ready to provide support on the clearinghouse design as needed.

Gen3 RAS Authorization/Authentication: Milestone 3 Requirements and Design

Version 1.0 (2021-09-17)

Table of Contents

Overview	1
Purpose and Scope	2
Key Capabilities	2
Technical Requirements and Design	4
RAS Milestone 3.1: Use RAS v1.1 passports for user authorization, instead of RAS v1.0	4
RAS Milestone 3.2 Use RAS V1.1 Passports for Data Access at DRS Servers API Design	7 10
RAS Milestone 3.2.4	11
RAS Milestone 3.4 Support to create G3FS passports V1.1 and visas for custom data access	11
Timelines	14

RAS - 1 (O'Connor)

	Updates	Gaps/Next Steps
Gen3	 Full implementation of RAS for AuthN Continued discussion of milestones 3 to enable full AuthZ using RAS passports directly Required SIA completed by U Chicago and signed off by CBIIT security 	 Full consensus on plans for milestone 3 to enable use of RAS passports Implementation of tasks established in the milestone 3 document
Seven Bridges	 Seven Bridges working to get RAS passports directly from RAS as part of UDN/NCBI/SRA use case. Full implementation of RAS for AuthN ISAs signed with all relevant systems Approval of current RAS milestone 3 plans 	 Upstream implementation of RAS for AuthZ and use of RAS passports in all systems Rapid and robust SOP for support of end users

RAS - 2 (O'Connor)

	Updates	Gaps/Next Steps
Terra	Terra is code complete on a new service the External Credentials Manager (ECM) which can obtain a RAS-issued Passport from RAS using the RAS v1.1 passport specification and can monitor to identify expiring visas and request updated visas. This is currently on Terra's non-production environment and will not be deployed or utilized until Gen3's DRS work is complete and Terra has completed the work for sending a RAS Passport to a Gen3 DRS server for data access.	Terra is currently planning the development work for sending a RAS Passport to a Gen3 DRS server for data access.
PIC-SURE	Compatibility with Gen3 RAS based authentication, still using Gen3 based authorization.	Leveraging RAS Passports for Authorization once available.

RAS - 3 (O'Connor)

	Updates	Gaps/Next Steps
NCBI	NCBI has released a RAS Clearinghouse v1 service that processes RAS 1.1 passport tokens. This service is used by the dbGaP DRS v1.0+ service, with extended features for processing passports that have now been incorporated into DRS v1.2. Online dbGaP genomic data stored in the SRA can be reached by POSTing a RAS passport and DRS id to the DRS service.	 Minor adjustments to bring dbGaP DRS in line with v1.2 Pilot passport v1.2 in support of FHIR Provide externally accessible pre-release support for developers
NCPI Outreach	Linking to documentation of RAS at https://anvilproject.org/ncpi/technologies	Keep RAS documentation up to date and expand as needed.

Lunch Break 1:00-1:45pm ET

(and RAS Breakout 1:15-1:45pm ET)

Breakout 1 Instructions (Patton)

We will open the **RAS** breakout room in this same Zoom. This breakout will last from 1:15-1:45 p.m. ET

- If you have downloaded the latest version of Zoom (<u>instructions</u> and <u>how-to</u> <u>video</u>), you can move yourself into your preferred room.
- Otherwise, request that meeting host move you to your room.

We will have breakout rooms for other key topics this afternoon.

Breakout Report Backs will be first on the agenda for Day 2.

We will reconvene in the plenary session at 1:45 p.m. ET.

NIH Workshop on Cloud-Based Platforms Interoperability

Updates on Key Topics

Part 2
End-User Cloud Costs, Search and Other
Interoperability Efforts

Becky Boyles, Moderator

End-User Cloud Costs - 1 (Schatz)

	Updates	Gaps/Next Steps
CRDC	 Continued use of \$300 pilot credits for new users Continued use of benchmarking data for published tools File archiving on AWS added to Seven Bridges for users to save on storage costs FireCloud has expanded its tools for cloud cost estimation with in-app cost reporting. Users can now see cost incurred on a per submission and per workflow basis 	 Continued documentation on AWS and Google costs, breakdown of costs for each analysis per NCI Cloud Resource New tutorial coming soon describing how to estimate cloud costs
AnVIL	 AnVIL Cloud Credits (AC2) Program initiated Offering \$300 in cloud credits Developed a cloud cost budget justification spreadsheet & template Improved cloud cost calculations released on AnVIL/Terra Started a project to empirically measure the costs of popular genomics tools: talk 	 Continuation and possible expansion of the AnVIL Cloud Credits (AC2) Program Develop a technical report on empirical cloud costs by Summer 2022

End-User Cloud Costs - 2 (Schatz)

	Updates	Gaps/Next Steps
BDCatalyst	 Offering \$500 cloud credits through the NHLBI Cloud Credits program with an opportunity to request more funds for Heart, Lung & Blood research. September Cloud Costs Community Hour: notes, slides, and Youtube videos available Published documentation on managing team costs, estimating workflow costs, and setting up spend alerts on Terra and estimating total cloud costs on SBG Launch of Project Per WorkSpace (PPWS) on Terra to support improved cost reporting functionality 	 STRIDES enhancing Dashboard to provide users with more visibility and timeliness into cloud credits available and spent. Seven Bridges investigating adding file archival options on Google Cloud. Identify and evaluate solutions for BYO cloud credits
Kids First	 All new users receive \$100 in pilot credits to explore CAVATICA (Seven Bridges). Training materials related to costs are available through the Kids First DRC Help Center and Cavatica's Support Documents. Wrote a report assessing the successes and lessons learned of a 2.5 year long pilot cloud credits program 	Finalize new guidelines and training materials to launch a public Cloud Credits program for Kids First users based on our own pilot's conclusions and recommendations of other NCPI platforms.

End-User Cloud Costs - 3 (Schatz)

	Updates	Gaps/Next Steps
NCBI	No egress costs for SRA datasets stored in AWS Open Data (ODP) buckets and GCP Public Dataset Program	All public SRA data is in AWS ODP, but more controlled access (dbGaP) sequence data is coming
	 No egress costs to access SRA data on AWS or GCP from within the respective cloud compute environments, if running from the correct regions; compute in the cloud is at user expense 	
	NCBI's <u>Cloud Data Delivery Service</u> provides free "thaw" from cold storage and delivery to users' buckets of SRA data in cold storage classes on AWS and GCP; per-user limits apply	
	Example user costs can be found <u>here</u>	

Search - 1 (Rogers)

Updates	Gaps/Next Steps
 Seven Bridges Cancer Genomics Cloud (CGC) complete UI for integration of Cancer Data Service (CDS) datasets now available 	Integration of Seven Bridges CGC and the CDA via Jupyter notebook
 Ongoing work to harmonize metadata and identifier standards across the CRDC to better enable search 	 Continued efforts at harmonizing metadata and identifier standards across CRDC
Cancer Data Aggregator (CDA) Release 1 launch to enable query of Genomic Data Commons (GDC) and Proteomic Data Commons (PDC) open access data	 CDA Release 2 launch scheduled to connect GDC, PDC and Imaging Data Commons (IDC) open access data
UAT testing of CDA Release 1	Obtain Authority to Operate (ATO) to publicly launch CDA API and enable controlled-access data query
Collaborated with <u>Center for Cancer Data</u> <u>Harmonization</u> (CCDH) team on end-to-end workflow demonstration of CRDC interoperability use cases	 Integrate with Cloud Resources (cloud analysis platforms) that provide CDA front end interface for UAT
	 Seven Bridges Cancer Genomics Cloud (CGC) complete UI for integration of Cancer Data Service (CDS) datasets now available Ongoing work to harmonize metadata and identifier standards across the CRDC to better enable search Cancer Data Aggregator (CDA) Release 1 launch to enable query of Genomic Data Commons (GDC) and Proteomic Data Commons (PDC) open access data UAT testing of CDA Release 1 Collaborated with Center for Cancer Data Harmonization (CCDH) team on end-to-end workflow

Search - 2 (Rogers)

	Updates	Gaps/Next Steps
BDCatalyst	 Open Access search for phenotypic (PIC-SURE) and genomic data (Seven Bridges) prior to authorization File and variable level search (phenotypic and genomic data) from User Interface on PIC-SURE File and variable level search (phenotypic and genomic data) from PIC-SURE API on Terra and Seven Bridges Semantic, public, full text, variable granularity search of TOPMed phenotypic concepts and dbGaP studies with explainable results, provenance in biomedical knowledge graphs, links to peer reviewed literature, and preliminary harmonization. (Dug) Open Access Study-Level Search prior to Login through Gen3 Discovery Page Subject, Study, and File Level Search (w/ secure limiting of results prior to authorization) through Gen3 Exploration Page Exposed search API's for metadata, file object records, and genomic/phenotype data (GraphQL) 	 Development of search use cases and personas Development of integrated search strategy Interoperability of handoff of search results to analysis workspaces across ecosystems - finding key use cases to drive development

Search - 3 (Rogers)

	Updates	Gaps/Next Steps
Kids First	 All clinical, phenotypic, demographic, file data searchable [both faceted and text] in registered-tier Portal that anyone can access (if they agree to click-through terms). Key non-Kids First datasets are also searchable in the Portal (interoperability with TARGET, CBTN etc). Filters applied to dynamic visualizations to build cohorts of multiple datasets and ability to identify children affected with multiple conditions (e.g., cancer & birth defects). All source data (as provided by submitters) made searchable in addition to "harmonized" HPO, MONDO, and NCIt terms Variant Database enables search of variants with annotations from ClinVar, TOPMed, Gnomad and the ability to identify which datasets include that variant and aggregated phenotypes. All studies are searchable in dbGaP and grouped in an umbrella BioProject Study (see slide about FHIR) 	 Back-end API is migrating from custom data service to a FHIR-based data service for interoperability with Portal, CAVATICA, and other tools. 6 out of 22 Kids First studies loaded into the Variant Database, more to be loaded Improvement to Variant Database in the Portal and the launching of the Variant Workbench (controlled access tool) which using table/matrix formats to find participants of interest and run analyses on a SPARK cluster.

Search - 4 (Rogers)

	Updates	Gaps/Next Steps
 Datase study p Datase dbGap contex Gen3 secure 	AnVILproject.org displays the dataset catalog	UX Research / Dataset Catalog UI updates to make the study detail pages more informative and useful.
	 Dataset Catalog - Newly added detail page for each study populated via dbGaP FHIR API and Terra. 	
	 Dataset Catalog - Deep link from the study page to dbGap "Request Access" page preserving the study context. 	
	 Gen3 - Subject, Study, and File Level Search (w/ secure limiting of results prior to authorization) through Gen3 Exploration Page 	
	Gen3 - Exposed search API's for metadata, file object records, and genomic/phenotype data (GraphQL)	

Search - 5 (Rogers)

	Updates	Gaps/Next Steps
NCBI	Studies and Metadata: Web / SOLR faceted search for: https://www.ncbi.nlm.nih.gov/gap/advanced_search/ FHIR Research Study resource: https://dbgap-api.ncbi.nlm.nih.gov/fhir/x1/ResearchStudy Sequence Runs: Sequence Read Archive: "controlled"[Access] - SRA - NCBI (nih.gov)	Gap: Coordinated Sequence catalog/API format Next steps: Linking access request system to search interfaces. Adding metadata and phenotypic data as RAS enabled FHIR API
NCPI- portal	 Held a "Mini Hackathon" for Dataset Catalog API integration AnVIL, BDC, CRDC db GaP studies all refreshed automatically via APIs. Newly added study descriptions for each dataset with data from dbGaP Deep link to dbGap "Request Access" from each study. 	 Refresh KF dbGaP studies via API Read non dbGaP studies via API. UX research / Incremental UI updates. Explore deeper integration with platform APIs and search engines. POC of integration with Dug semantic search.

Other Interoperability Efforts - 1 (Ahalt)

	Updates	Gaps/Next Steps
CRDC	 DRS Client added to CGC (now has both Server and Client) Push button connection between CGC, BDC, and Cavatica utilizing DRS endpoints Ability to connect to any open DRS endpoint or add known DRS endpoints 	Broad FireCloud using DRS to integrate Proteomics Data Commons datasets
AnVIL	 Forward looking work at workflow interoperability Forward looking work at utilizing generic "app" definitions for extending the AnVIL platform (e.g. expanding the Leo service that powers Galaxy integration) 	Continue to collaborate with BDCatalyst and other NCPI teams on the development of the "app" interface and extension of the Leo component to support it
BDCatalyst	 Imaging: POC Nifti ingestion workflow New co-leads of Tools & Apps WG, proposed tiered approach for establishing criteria to support V3PAs Established Tool Trust Tiger Team (T4) to address data protections and workflow credibility standards Ongoing discussion between PIC-SURE and AnVIL 	 Identification of use cases to drive next interop efforts Test RAS using incoming SRA data (PCGC) Continued exploration in imaging access and analysis, eg ability to support new image formats

Other Interoperability Efforts - 2 (Ahalt)

	Updates	Gaps/Next Steps
Kids First	Active cross-platform use cases include: • <u>CFDE</u> (Kids First and HubMap: running common workflows, integrated knowledge graph; multiple DCCs: develop FHIR profiles for CFDE human datasets; exploring CAVATICA use) • <u>INCLUDE</u> (Data Hub launching in March) - interop on genomic data of children with DS & leukemia and CHD • <u>CARING for Children with COVID</u> : share pediatric COVID clinical data through FHIR API for ImmPort and BioData Catalyst to interoperate with. Additional use cases of interest: • FaceBase - craniofacial birth defects data, human and model - also other model organism databases • ABCD/HBCD (NDA) - pediatric genomics and imaging • RDCRN - exploring CAVATICA use	New <u>DATA Scholar</u> starts 9/27, she will engage users, document use cases, propose, test and implement solutions, coordinate with NCPI and stakeholders

Other Interoperability Efforts - 3 (Ahalt)

	Updates	Gaps/Next Steps
NCBI	All dbGaP Approvals delivered to RAS	dbGaP File Selector and SRA Run Selector configured for RAS Auth (in development)
	dbGaP DRS in Public	
	See: dbGaP DRS Documentation	
	IDX service in Public	
	See: SRA IDX Documentation	
	FHIR Research Study API	
	See:	
	https://dbgap-api.ncbi.nlm.nih.gov/fhir/x1/ResearchStu	
	<u>dy</u>	

Breakouts PFB & FHIR, Other Interoperability Efforts

Breakout 2 Instructions (Patton)

We will open the **PFB/FHIR** and and **Other Interoperability Efforts** breakout rooms in this same Zoom. These breakouts will last until **3:10 p.m. ET**

- If you have downloaded the latest version of Zoom (<u>instructions</u> and <u>how-to</u> <u>video</u>), you can move yourself into your preferred room.
- Otherwise, request that meeting host move you to your room.

We will then have a brief break and open the breakout rooms for End-user Cloud Costs, Search, and Other Interoperability Efforts.

Breakout Report Backs will be first on the agenda for Day 2.

NIH Workshop on Cloud-Based Platforms Interoperability

Plan for Day 2

Becky Boyles

Agenda: Day 2 All times ET (Ahalt)

Time	Activity	Owner	Links
11:00-11:10am	Welcome and Goals Day 2: Synthesize next steps, driving use cases, determine NIH/NCPI priorities	Stan Ahalt	Slides Notes
11:10-12:40pm	Breakout Report Backs and Discussion •PFB (10 min) (Grossman) •FHIR (10 min) (Carroll) •RAS (20 min) (O'Connor) •End-User Cloud Costs (20 min) (Schatz) •Search (20 min) (Rogers) •Other Interoperability Efforts (10 min) (Ahalt)	Moderator: Becky Boyles	Slides Notes
12:40-12:50pm	GA4GH Relationship	Brian O'Connor	Slides Notes
12:50-2:00pm	Lunch Break	Bhar e como	<u> </u>
1:30pm-2:00pm	NIH Breakout: NIH Coordination Working Group Discussion of Priority Next Steps	NIH Only (via separate invitation)	
2:00-2:15pm	Use Case Overview: The Journey of a NCPI Use Case	Asiyah Lin	Slides Notes
2:15-3:20pm	Review of Current Scientific Use Cases	Moderator: Valentina Di Francesco	Slides Notes
2:15-2:30pm	Genetic Sex as a Biological Variable and X-inactivation	Melissa Wilson	Slides Notes
2:30-2:50pm	Interoperability between Kids First & Undiagnosed Diseases Network (UDN) Data via dbGaP/SRA	Valerie Cotton, Allison Heath	Slides Notes
2:50-3:05pm	Leveraging Functionally Equivalent Pipelines for Long-Read Data on Different Systems	Owen Hirschi	Slides Notes
3:05-3:20pm	Conducting reproducible science in PIC-SURE interoperating with Seven Bridges/Terra	Simran Makwana	Slides Notes
3:20-4:00pm	Synthesize Goals and Next Steps for the next 6 Months, with focus on driving use cases	Stan Ahalt, Jon Kaltman	Slides Notes

Meeting Deliverable: NCPI Glossary

- Remember to keep populating the NCPI Glossary with new words or additional definitions
- We hope this <u>Glossary</u> will be a concrete deliverable at the end of the meeting to help us coalesce around common definitions and/or highlight differences.

Breakouts End-user Cloud Costs, Search

Breakout 3 Instructions (Patton)

We will open the **End-user Cloud Costs and Search** breakout rooms in this same Zoom. These breakouts will last until **4:00pm ET**

- If you have downloaded the latest version of Zoom (<u>instructions</u> and <u>how-to</u> <u>video</u>), you can move yourself into your preferred room.
- Otherwise, request that meeting host move you to your room.

Breakout Report Backs are on the agenda at 11:10am ET on Day 2.

NIH Workshop on Cloud-Based Platforms Interoperability

Welcome to Day 2...

NIH Cloud Platforms Interoperability Fall 2021 Workshop

We'll be starting shortly!

NIH Workshop on Cloud-Based Platforms Interoperability

Welcome and Goals Day 2:

Synthesize next steps, driving use cases, determine NIH/NCPI priorities

Stan Ahalt

Virtual Meeting Roles (Patton)

Role	Purpose	Assignee & Slack	
Maestro: Mute Master, Raised-Hand Monitor, & Security	Master of Zoom Ceremonies. Contact Amanda for questions about Zoom issues, breakout rooms, or other general questions or if you notice suspicious activity.	@Amanda Miller (amiller@renci.org)	
Screen Sharing	Will share screen and advance slides.	@Julie Hayes	
Slide Content	Will update slide content throughout the meeting.	@Sarah Davis	
Moderator	Moderator listed for each agenda item. Moderator will prompt slide transitions during presentations and foster productive conversation during discussions.	Becky Boyles (@rboyles)	Stan Ahalt (@stan)
Plenary Notetakers	All are encouraged to add comments to the <u>Homepage and Meeting Notes</u>	@Datrial Datter	@Joe Asare @Tom Madden @John Cheadle
Q&A Monitor	Monitor questions in #oct_workshop Slack channel as well as Zoom Chat. Share Action Items, Decisions, and Outstanding Questions from Slack and Zoom to the Homepage and Meeting Notes	@Patrick Patton@Paul Kerr@Allie Gartland Gray	
Time Watcher	Will try to keep us on time while still allowing room for important conversations.	@Sarah Davis	

Questions during the event? (Patton)

Verbal Questions: There will be time for questions throughout the meeting. If you want to verbally ask a question, use the Zoom feature to "raise your hand" and the host will enable your audio and then call on you to ask your question.

Zoom Chat: You can type questions via Zoom Chat throughout the meeting. Paul Kerr, Patrick Patton, Joe Asare, Allie Gartland-Gray, Tom Madden and John Cheadle will share questions from Slack and Zoom chat into the Homepage and Meeting Notes.

Slack: Questions can be asked throughout the meeting by using the <u>#oct_workshop</u> Slack channel. We encourage anyone to write questions, comments, answers, or discussion in Slack at any time. If you have not received an invitation to <u>#oct_workshop</u>, please email <u>amiller@renci.org</u>.

The latest version

Want the ability to move independently between breakout sessions?

We updated the meeting settings to allow attendees to move freely between the breakout rooms. **This setting** requires the latest version of **Zoom**.

- Follow these instructions or
- Watch this how-to video here: https://youtu.be/E7zERcVLUBM

BDCatalyst Statement of Conduct (Ahalt)

The BioData Catalyst Consortium is dedicated to **providing a** harassment-free experience for everyone, regardless of gender, gender identity and expression, age, sexual orientation, disability, physical appearance, body size, race, or religion (or lack thereof). We do not tolerate harassment of community members in any form. Sexual language and imagery is generally not appropriate for any venue, including meetings, presentations, or discussions.

Community Rules of Engagement (Ahalt)

BDCatalyst "Santa Cruz Rules of Engagement":

- Do not shy away from identifying problems & risks
- Be candid
- Be heard
 - Identify an ally or motivate via Slack
 - Reach out to a Contact for particular topic(s) Slack or email <u>bdc3@renci.org</u> if you don't know the Contact

Be polite

- Please use your full name on zoom. (* new addition! *)
- If you are a "talker" remember to give others time/space to talk if you are "quiet", take advantage of any opening
- Add your comments/ideas to notes if you don't find space to talk!

Agenda: Day 2 All times ET (Ahalt)

Time	Activity	Owner	Links
11:00-11:10am	Welcome and Goals Day 2: Synthesize next steps, driving use cases, determine NIH/NCPI priorities	Stan Ahalt	Slides Notes
	Breakout Report Backs and Discussion •PFB (10 min) (Grossman) •FHIR (10 min) (Carroll) •RAS (20 min) (O'Connor) •End-User Cloud Costs (20 min) (Schatz) •Search (20 min) (Rogers)		
11:10-12:40pm	Other Interoperability Efforts (10 min) (Ahalt)	Moderator: Becky Boyles	Slides Notes
12:40-12:50pm	GA4GH Relationship	Brian O'Connor	Slides Notes
12:50-2:00pm	Lunch Break		
1:30pm-2:00pm	NIH Breakout: NIH Coordination Working Group Discussion of Priority Next Steps	NIH Only (via separate invitation)	
2:00-2:15pm	Use Case Overview: The Journey of a NCPI Use Case	Asiyah Lin	Slides Notes
2:15-3:20pm	Review of Current Scientific Use Cases	Moderator: Valentina Di Francesco	Slides Notes
2:15-2:30pm	Genetic Sex as a Biological Variable and X-inactivation	Melissa Wilson	Slides Notes
2:30-2:50pm	Interoperability between Kids First & Undiagnosed Diseases Network (UDN) Data via dbGaP/SRA	Valerie Cotton, Allison Heath	Slides Notes
2:50-3:05pm	Leveraging Functionally Equivalent Pipelines for Long-Read Data on Different Systems	Owen Hirschi	Slides Notes
3:05-3:20pm	Conducting reproducible science in PIC-SURE interoperating with Seven Bridges/Terra	Simran Makwana	Slides Notes
3:20-4:00pm	Synthesize Goals and Next Steps for the next 6 Months, with focus on driving use cases	Stan Ahalt, Jon Kaltman	Slides Notes

Next Steps, Next Steps, Next Steps

- What do we hear in the Breakout Report Backs and Use Case Updates that highlight or clarify what we need to do next?
- How do we distill those potential next steps to the priority next steps?

Meeting Deliverable: NCPI Glossary

- Remember to keep populating the NCPI Glossary with new words or additional definitions
- We hope this <u>Glossary</u> will be a concrete deliverable at the end of the meeting to help us coalesce around common definitions and/or highlight differences.

NIH Workshop on Cloud-Based Platforms Interoperability

Breakout Report Backs

Becky Boyles, Moderator

PFB - Gaps and/or Key Blocks (Grossman)

What are gaps and/or key blockers for creating interoperability across platforms?

- Recall PFB supports different data models
 - With "PFB Light," we have defined <u>some standard attributes</u> (13 attributes to define identify required BAM/CRAM files in a manifest) - solves a basic interoperability problem
 - Other PFB models used in NCPI to transfer clinical/phenotype data from Gen3 to a cloud platform
- Identifying next set of use cases for interoperability that includes both data objects (e.g. BAM/CRAM files) and structured data (e.g. clinical/phenotype data)
 - We have FHIR use case but only a use use for PFB Light

PFB Interop Trade-Offs

- Selecting user-define virtual cohorts in a portal, computes PFB on the fly (which
 can take time) vs also supporting precomputed PFB for predefined studies
- Agreeing to one data model for PFB vs supporting arbitrary models that must be parsed by the cloud platform that imports the PFB

PFB - Gaps and/or Key Blocks

- Confusion about what PFB is / is not
- Clarifying differences and similarities between PFB, VDB and other self-contained, self-describing encapsulation file formats and FHIR

PFB - Actionable Next Steps

What are actionable next steps to take in the next six months (including existing or potential driving use cases)?

- Document distinguishing PFB use cases
 - NCPI "Light PFB" for exchanging "manifest information" about research subjects in a cohort and associated BAM/CRAM files (13 fields)
 - Exporting and Importing full clinical/phenotype data and associated data model for a study
 - Exporting and Importing self-describing "AI/ML ready" datasets
- Demonstration of using precomputed PFB file containing data data for a research publication with full clinical/phenotype and DRS references to external BAM/CRAM files that is exchanged across two or more NCPI systems (will focus on AI/ML ready data)

What are gaps and/or key blockers for creating interoperability across platforms?

- Adoption across platforms
- Lack of clear documentation of uses of FHIR
- Need a map to communicate what the goals are and what the limits are

What are actionable next steps to take in the next six months (including existing or potential driving use cases)?

- Align on Research Study and metadata v1 representation
 - o To help facilitate Portal and Search activities
- Develop and promulgate a set of milestones around services/use cases/limitations, and work with platforms to identify roadmaps for these opportunities

Quick FHIR use cases (Carroll)

FHIR includes a data model, vocabulary tools, and service layers (eg, REST API)

- Ingest of EHR data- <u>Federal Mandates for EHRs to support FHIR</u>
- Ingest of other data, e.g. with <u>REDCap module</u> or <u>CDEs</u>
- Vocabulary tools that support existing standards and custom or local definitions
- We can represent existing study data in a structured way "as is"
- We can represent study data in a robust, harmonized way to provide service guarantees to platforms and users
- Options for server implementations of a global standard we don't have to invent
 Google (AnVIL?), AWS, Azure, IBM*, smile CDR (KF) / HAPI*, firely, and more (* open source)
- Exchange data from disparate systems in a common way (even if content is not harmonized)
- Capacity to represent Study Summary and Study Metadata
- Capacity to reference external files, eg DRS URIs, with file metadata

What are gaps and/or key blockers for creating interoperability across platforms? Specifically, we focused on **risks** for "milestone 3", the use of RAS for authorization:

- Timeline for 1) testing environment 2) production release
 - December for testing
 - End of Q1 2022 for workspaces and production DRS servers
- Architecture of services vs. implementation details
- Performance of RAS passports for data access with DRS
- Single sign on experience (maybe a longer term topic)

Beyond "milestone 3":

- Performance, batch operations, requester pays → updated DRS 1.3 and beyond
- Derived data authorization inheritance
- Securing other APIs (e.g. FHIR) with Passports
- Consortium users and repackaged Passports from non-RAS brokers for this purpose
- Working with other IAM systems and partners, international collaborations with groups like Elixir and standards groups like GA4GH

What are actionable next steps to take in the next six months (including existing or potential driving use cases)? *A proposal*:

- Meet our "milestone 3" goals, top priority
- Begin planning "milestone 4"
 - Performance
 - Derived data
 - Securing other APIs (FHIR) with Passports
 - Consortium users and repackaged Passports
- Reach out to Passport partners beyond RAS
 - Working with other IAM systems and partners, international collaborations with groups like Elixir and standards groups like GA4GH
 - How would we access data from systems beyond those accessible with RAS Passports?

End-User Cloud Costs (Schatz)

What are gaps and/or key blockers for creating interoperability across platforms?

- Cloud cost model is an enormous cultural shift
 - o Institutional resources are "free"; anxiety over runaway costs; difficult to budget; complex payment
- Be mindful of both direct costs (e.g. storage, compute, egress) and overhead (e.g. admin, initialization)
 - o "Free credits" are expensive; need to emphasize the advantages & make platforms easier to use
- A consumable model for analysis costs
 - Sequencing assays range from very routine (e.g. WGS w/ predictable protocols & costs) to highly experimental (e.g. 1st-gen Single Cell w/ very unpredictable protocols & costs)
 - Most NCPI computing now is highly experimental => Need to transition into a consumable model

What are actionable next steps to take in the next six months?

- Budget templates & guides; standardization language for grants endorsed by NCPI
- Draw out end-to-end user stories: upload, analysis, egress/distribution, maintenance, payment, accounts
- Aggregate cost modeling efforts across NCPI into a unified "database"
- Long term: Free tier for NCPI (Google Colab, AWS free tier); codeathon to optimize workflows; funding

Gaps	Next Steps					
Understanding cross-platform personas and use cases.	Form a search working group and					
 Understanding how the data is consented and how to apply for access. Searching over phenotype. Searching by experimental metadata. Searching by subject demographics. Determining if a given genotype is present in a given dataset before having access. 	 Conduct UX research to determine personas and use cases for search from actual users. Determine who how to source users e.g. BDC Fellows. Create a list of search components and APIs used in the NCPI platforms, demonstrate how to use, and collect feedback. Create a search taxonomy to define the different kinds of search used/envisioned to inform an integrated search roadmap. Link back to studies in context from the NCPI dataset 					
Building Cohorts (priority order)	catalog.					
 Finding and gaining access to different search portals. Portals lacking "send to workspace env' buttons to easily take search results to analysis platforms. 	 Generate input for the upcoming search RFI <u>NOT-OD-21-187</u>. Explain data consents. Explore integrating FHIR into the search strategy. 					
Easy Retro Board						

Other Interoperability Efforts (Ahalt)

What are gaps and/or key blockers for creating interoperability across platforms?

- We need defining use cases from real-world researchers to help us identify the next steps for increased ecosystem Interoperability. Interestingly, there is a significant demand!
- Search across platforms is essential and fortunately, we are making progress.

What are actionable next steps to take in the next six months (including existing or potential driving use cases)?

- Seek out real-world researchers an identify the next generation of users who want new Interoperability features.
- Look into the feasibility of standardizing how Tools/Apps are deployed across ecosystems to encourage portability.
- Develop methods for publishing completed use cases so that researchers can replicate them locally for training purposes / scientific verification. Include YouTube videos!
- Look for opportunities to create and deliver training on interoperable problems and methods.

NIH Workshop on Cloud-Based Platforms Interoperability

GA4GH Relationship

Brian O'Connor

Global Alliance for Genomics and Health (GA4GH)

Mission: Enable genomic data sharing for the benefit of human health

The GA4GH is a policy-framing and **technical standards-setting** organization, seeking to enable responsible genomic data sharing within a human rights framework.

https://ga4gh.org

The GA4GH Ecosystem

The GA4GH Work Process

GA4GH Work Streams develop standards, tools, and frameworks that are designed to overcome technical and regulatory hurdles to international genomic data-sharing.

VIEW WORK STREAMS

GA4GH Driver Projects are real-world genomic data initiatives sourced from around the globe that provide guidance on GA4GH standards development. **VIEW DRIVER PROJECTS**

Technical Alignment Sub-Committee

The Technical Alignment Sub-Committee (TASC) provides mechanisms and recommendations to create internal consistency and technical alignment across GA4GH Work Streams and product deliverables. TASC serves as a central decision-making group, documenting and communicating these decisions across multiple stakeholders.

LEARN MORE

Partner Engagement

The GA4GH Partner Engagement initiative facilitates two-way dialogue with the international community, including national initiatives, major health care centres, and patient advocacy groups.

CONTACT

The GA4GH Work Process

		Real-World Driver Projects										
	Discovery	~		~		~		~				
ams	Large-Scale Genomics		~		~		~		~			
Technical Work Streams	Data Use & Researcher IDs	~		~		~	~			~	nent	
nical W	Cloud		~	~					~		ngager	
Tech	Genomic Knowledge Standards		~				~	~	~		Partner Engagement	
	Clinical & Phenotypic Data Capture	~			~	~	~			~	- R	
Foundational Work Streams	Regulatory & Ethics	/	~	~	~	~	~	~	~	/		
Founda Work St	Data Security	~	~	~	~	~	~	~	~	~		

GA4GH Vision for Interoperability

The GA4GH Driver Projects

GA4GH Driver Projects are real-world genomic data initiatives that help guide our development efforts and pilot our tools. Stakeholders around the globe advocate, mandate, implement, and use our frameworks and standards in their local contexts.

National Cancer Institute Cancer Research Data Commons (NCI CRDC)

National Cancer Institute Genomic Data Commons (NCI GDC)

Trans-Omics for Precision Medicine (TOPMed)

And many others...

GA4GH Standards Used by NCPI

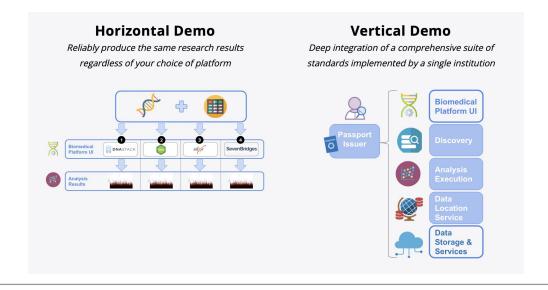
- See the full collection at https://www.ga4gh.org/genomic-data-toolkit/
 and https://www.ga4gh.org/genomic-data-toolkit/
- Passports and Authentication & Authorization Infrastructure (AAI)
- Data Repository Service (DRS)
- Tool Registry Service (TRS) (used by workspaces)
- Various file formats maintained by the GA4GH
 - CRAM
 - SAM/BAM
 - VCF/BCF
- Others?

New Opportunities with GA4GH

- What are new opportunities for collaborating with GA4GH?
- New API Possibilities
 - Data Connect → search API
 - Data Use Ontology (DUO) → describing data use restrictions
 - Phenopackets → relationship with FHIR for example
 - Task Execution Service (TES)/Workflow Execution Service (WES) → federated compute
 - Service Registry → advertise our services
 - Explore the options <u>here...</u>
- API adjacent and working groups
 - Starter Kit → trying out APIs
 - Technical Alignment Sub-Committee (TASC) → Building tooling for Work Streams
 - Federated Analysis Systems Project (FASP) → testing use cases with Drivers
- Are there new standards we want to propose? E.g. PFB to Discovery?

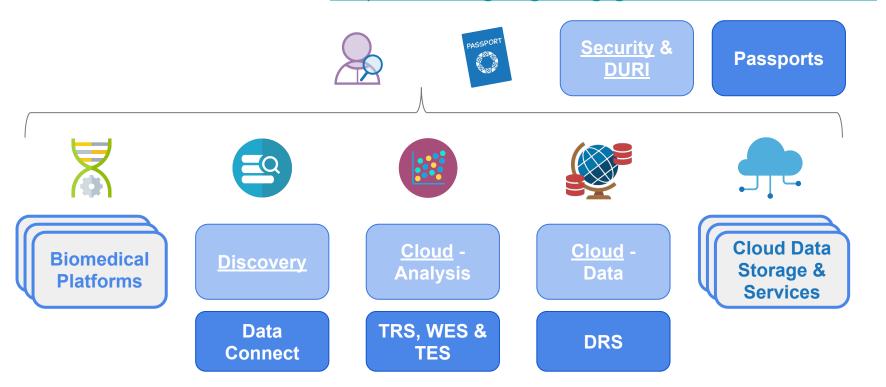
GA4GH Starter Kit

- Reference server implementation suite of GA4GH API specs (DRS & WES right now)
- Simplicity and versatility of setup
 - local laptop, HPC, cloud
- Technical on-ramp for:
 - Individuals new to GA4GH
 - Organizations exploring GA4GH on non-cloud native architectures


Modular - Run APIs tailored to use case

https://bit.ly/starterkit-slides

- GA4GH Federated Analysis Systems Project
 Working with Driver Projects to demonstrate GA4GH standards
 - → great opportunity to collaborate on researcher use cases
 - → we are already participating in this e.g. use case #7



What Might this Look Like?

See the full collection at https://www.ga4gh.org/genomic-data-toolkit/

Engagement Opportunities

- GA4GH Connect Oct 12-14, register here
 - Opportunities for collaboration across Work Streams and Driver Projects and for contributors to advance work on the GA4GH Strategic Roadmap
- Genomics in Health Implementation Forum (GHIF) Nov 16-17, register here
 - Genomics in Health Implementation Forum (GHIF)
 aims to support accurate data interpretation, diagnosis,
 and innovative solutions through global cooperation in
 data sharing and clinical implementation of genomics.
- FASP Regular Bi-Weekly <u>Meetings</u>
- GA4GH Equity, Diversity, and Inclusion (EDI)
 Advisory Group → info@ga4gh.org

NIH Workshop on Cloud-Based Platforms Interoperability

Lunch Break 12:50 p.m. - 2:00 p.m.

1:30 - 2:00 p.m.

Breakout, by invitation only: NIH Coordination Working Group Discussion of Priority Next Steps

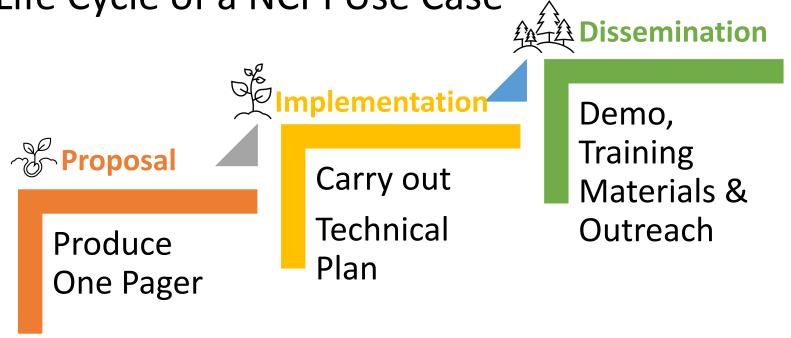
NIH Workshop on Cloud-Based Platforms Interoperability

Use Case Overview: The Journey of a NCPI Use Case

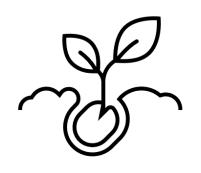
Asiyah Yu Lin

The Journey of a NCPI Use Case

From a seed to a forest


Asiyah Y. Lin
The 5th NCPI Workshop
Oct 6, 2021

What is a NCPI Use Case?


- Access and integration of data from NCPI platforms (n>=2) is needed to answer a scientific question
- Interoperability demos
 - Search datasets from 2+ NCPI platforms
 - Access data from 2+ NCPI platforms for analysis in one workspace
 - Portable software and tools across 2+ NCPI platforms
 - More examples ...
- Ultimate goal: to drive the development of NCPI interoperability technology specification

^{*}NCPI platforms: platforms support AnVIL, BDCat, CRDC, Kids First, NCBI.

Life Cycle of a NCPI Use Case

Proposal Phase

- NIH staff or a researcher identifies a potential scientific use case.
- In collaboration with NCPI WG Leads and platform PIs:
 - Identify scientific lead
 - Identify platform lead (a.k.a. interoperability tech lead)
 - Develop the interoperability plan and challenges
 - Identify funding resources
- Develop one pager.
- NIH Coordination WG keeps the one pager for documentation and management purposes.

Interoperability between Kids First/CAVATICA and SRA's copy of the Undiagnosed Diseas NCPI Use Case Details

Status: NCBI actively moving all files (BAMs) to hot AWS/SRA storage. Files become immedi DRS as they are moved into S3. Next steps: Seven Bridges development work to obtain RAS present them to NCBI/SRA DRS server to access files in CAVATICA workspaces.

Platform contact for genomic interop: Michele Mattioni and Kurt Rodarmer

Platform contact for FHIR structuring: TBD (one from dbGaP, one from Kids First)

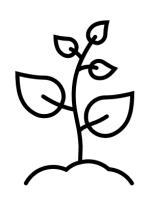
Researcher contact: TBD - assigned to Adam Resnick to resolve Lisa Bastarache

Dataset: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs00123
and [insert Kids First datasets once determined, listed here:

https://commonfund.nih.gov/kidsfirst/x01projects]

NCPI use case link for genomic data interop: https://github.com/NIH-NCPI/NCPI_use_case

NCPI use case link for FHIR structuring of phenotypes: https://github.com/NIH-


NCPI/NCPI use case tracker/issues/18

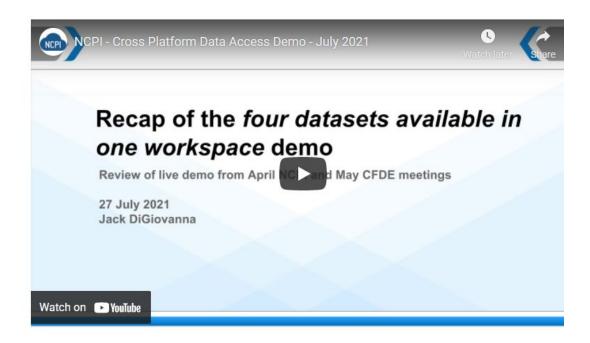
Summary:

Goal: enable co-analysis of Kids First data (BAMs/CRAMs + phenotype data) with U
phenotype data) in Seven Bridges CAVATICA. This requires 1) search/finding the day

One pager Example

Implementation Phase:

- Scientific and platform leads coordinate with the System Interoperability WG to carry out the technical plan.
- Scientific and platform leads are responsible for reporting implementation progress.
- Demos at the bi-annual workshop.
- Provide updates on the GitHub Use Case Tracker.
- May become inactive use cases if no progress is made.


Dissemination Phase:

- A NCPI use case is completed with a demo of the implemented interoperability technical plan (**Note:** completion of the research plan is not necessary).
- Work with Outreach WG (Dave Rogers) to develop training materials:
 - 1. Training videos
 - 2. Necessary documentations
 - 3. Any publications (if relevant)
- Reach out and educate users to implement and grow the user community!

Training video example

Demo of Search Result Hand-off

https://anvilproject.org/ncpi#demo-of-search-result-hand-off

https://github.com/NIH-NCPI/NCPI use case tracker/issues

UC 13: Leverage functionally equivalent pipelines for long-reads data on different systems one pager done #15 opened on Jul 13 by jackDiGi Ⅲ Ready to develop	₽ 2
UC 12 - (Xihong) Whole Genome Sequencing Association Analysis pipeline one pager done #12 opened on Jun 29 by NoopDog Ⅲ On Hold	□ 3
● UC 11. (Wilson) Sex as a Biological Variable one pager done #11 opened on Jun 29 by NoopDog III Ready to develop	₩ 3
UC 10. SRA & Kids First DRC for Kids First & UDN co-analysis one pager done #10 opened on Jun 29 by NoopDog Ⅲ Ready to develop	₽ 2
UC 9. Whole slide images need one pager #9 opened on Jun 29 by NoopDog Ⅲ Ready to develop	₽ 2
 UC 8. PIC-SURE API search of clinical and genomic data available from Seven Bridges Platform need one pager #8 opened on Jun 29 by NoopDog	₩ 2
 7. NHGRI AnVIL + Kids First DRC + NHLBI BioData Catalyst need training material #7 opened on Jun 29 by NoopDog Ⅲ Use Case Complete 	₩ 4
○ UC 1a. NHLBI BioData Catalyst + Kids First DRC inactive	

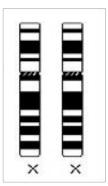
#2 opened on Jun 29 by NoopDog III On Hold

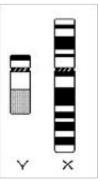
Questions and Suggestions are welcomed!

Team: Asiyah Lin, Dave Rogers, Jack DiGiovanna, Ken Wiley, Valerie Cotton, Valentina Di Francesco

NIH Workshop on Cloud-Based Platforms Interoperability

Genetic Sex as a Biological Variable and X-inactivation

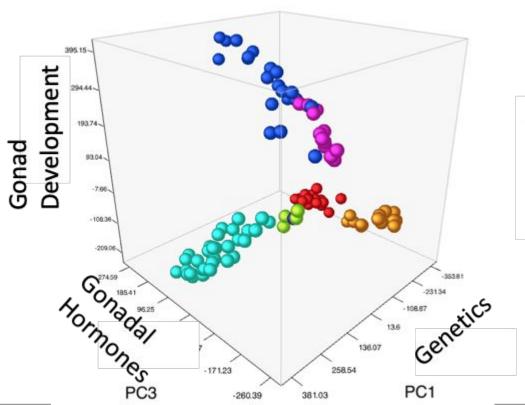

Melissa Wilson, PhD Arizona State University



Genetics

Gonads
 (& gonadal hormones)

Gender



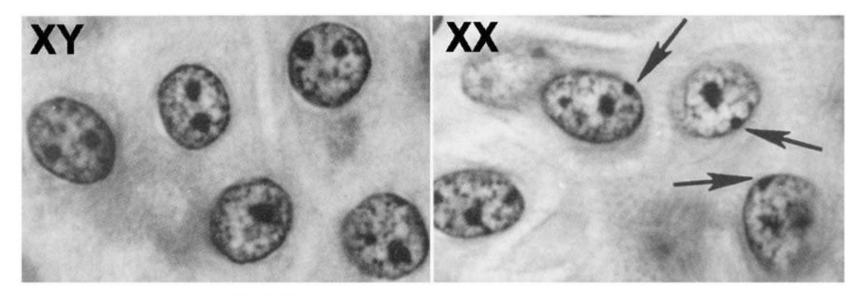
Sex differences are multidimensional

More than bimodal!

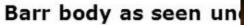
Searching for sex differences

Melissa A. Wilson

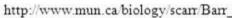
+ See all authors and affiliations


Science 11 Sep 2020: Vol. 369, Issue 6509, pp. 1298-1299 DOI: 10.1126/science abd8340

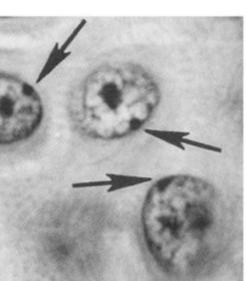
X-inactivation



Barr body as seen under the microscope



http://www.mun.ca/biology/scarr/Barr_Bodies.jpg


X-inactiva

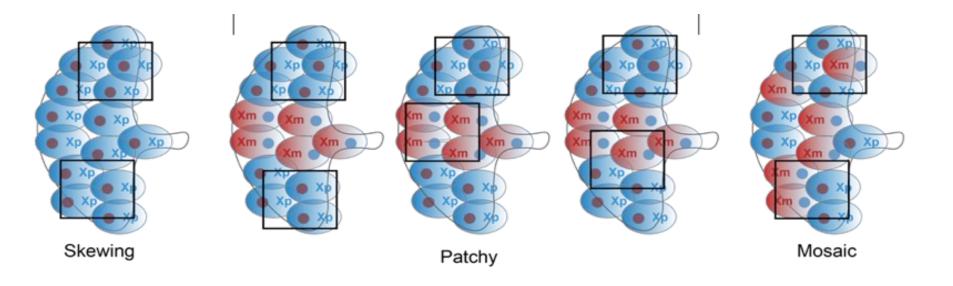
Inactivation varies

- Approximately 1/3 of X-linked genes are <u>inactivated</u> in all individuals and tissues assayed thus far
- Approximately 1/3 of X-linked genes are <u>not inactivated</u> (<u>escape</u>) in at least some tissues and individuals

X-inactivation in the human placenta

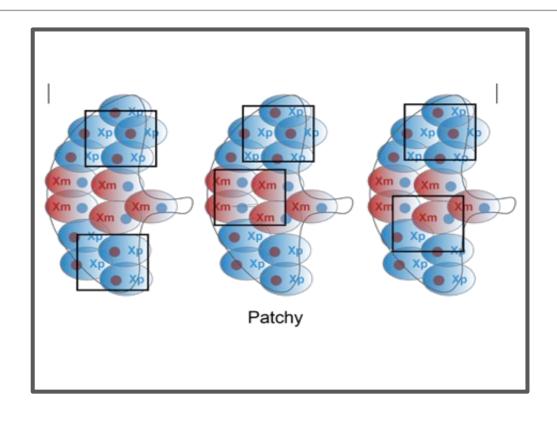
Tanya Phung

Kimberly Olney (Phung et al, submitted)

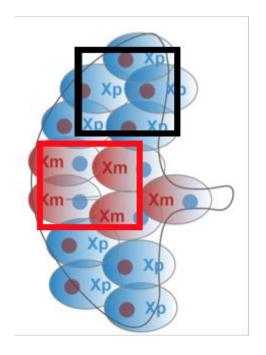


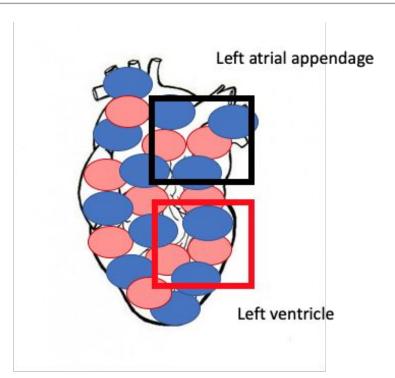
The placenta is the genotype of the offspring

X-inactivation in the placenta

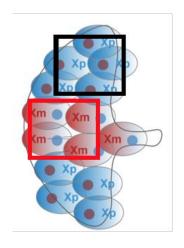


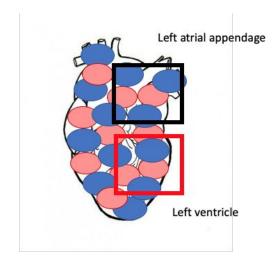
Patchy X-inactivation in the placenta





Placenta distinct from adult tissues


Heart data from GTEx consortium



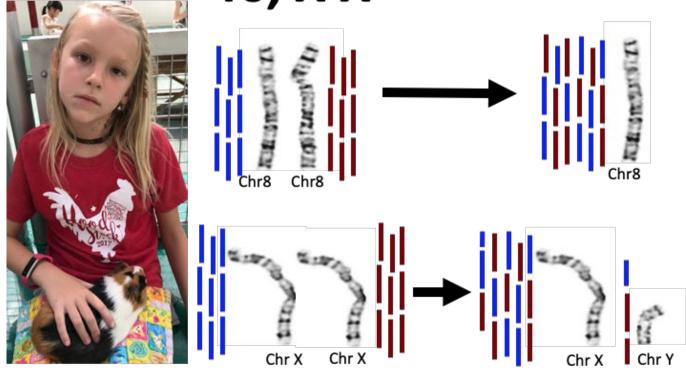
X-inactivation across samples?

- Which genes escape
- Are these genes unique to a tissue, or to a condition
- Some genes escape only in T-cells and B-cells
- What is XCI across cancers? Different in pediatric or adult?



Heart data from GTEx consortium

Sex chromosomes are unique



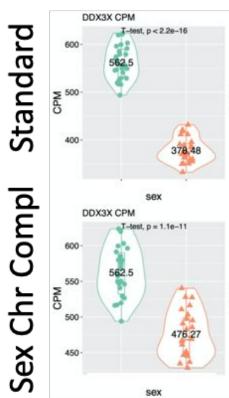
Sex Chromosomes mis-mapping

Sex chr complement reference

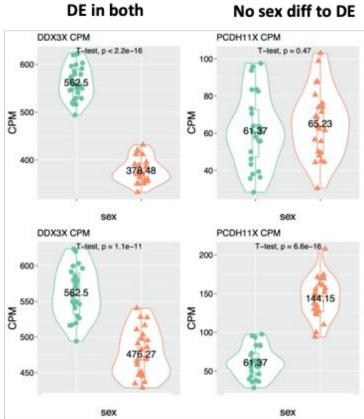
Infer sex chromosome complement

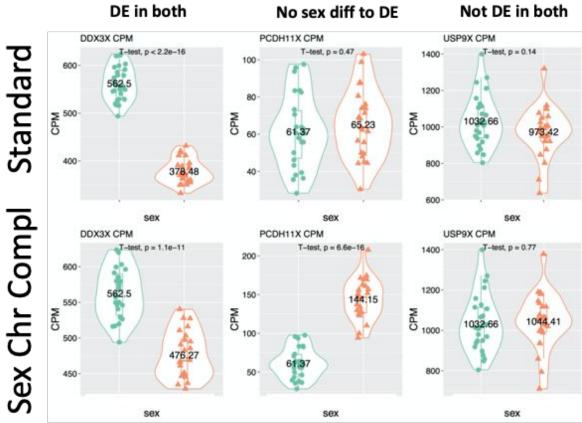
Output in user-defined windows (all chr):

- Quality
- Depth
- Allele-balance

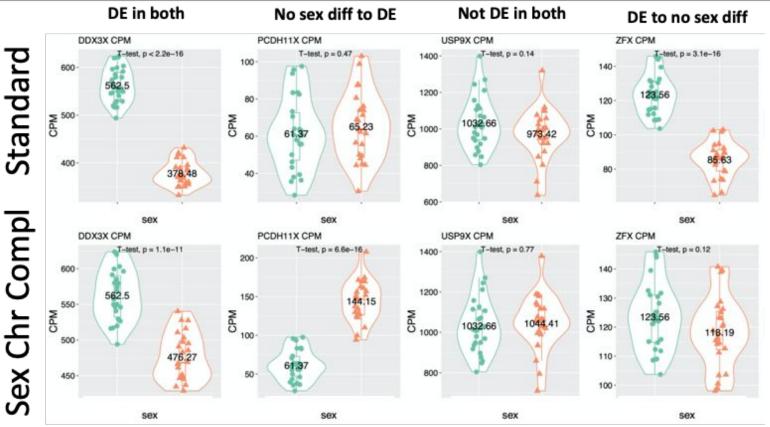


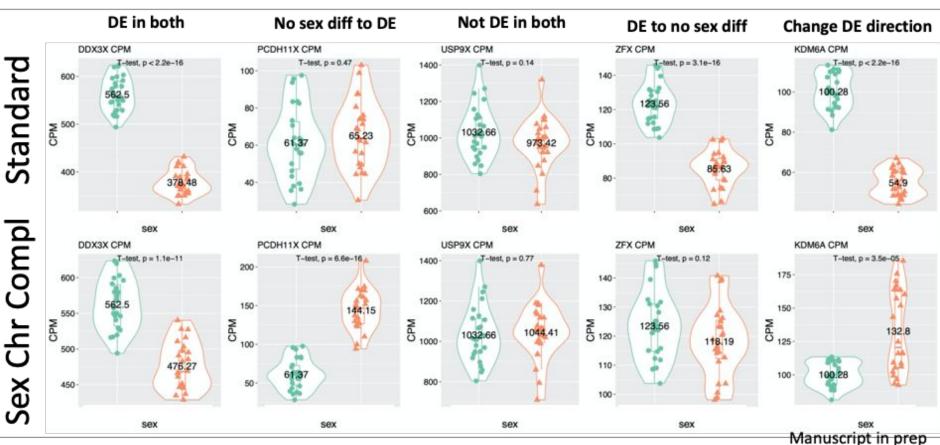
Timothy Webster

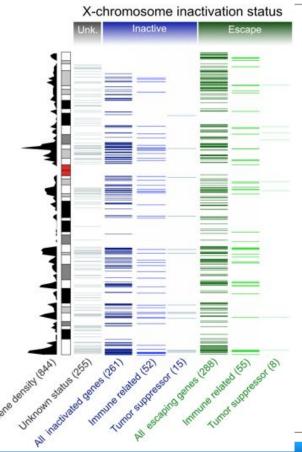

DE in both



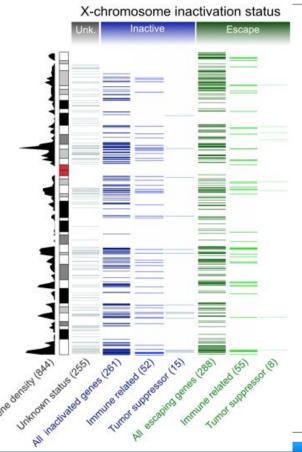
Standard Sex Chr Compl







X-inactivation & X-linked expression


Male bias

- Adult cancers
- Pediatric cancers
- Heart disease
- Susceptibility to COVID-19 (ACE2 receptor is X-linked)

X-inactivation & X-linked expression

Male bias

- Adult cancers
- Pediatric cancers
- Heart disease
- Susceptibility to COVID-19 (ACE2 receptor is X-linked)
- Female bias
 - Heart disease after menopause
 - Autoimmune disease
 - Adverse reactions to COVID-19 vaccines

Acknowledgements

Tanya Phung

Kimberly Olney

Tim Webster

Acknowledgements

James Taylor 1979-2020

Brain O'Connor @bconnor

Becky Boyles @becky_boyles

Good ideas don't have owners - they belong to everyone -James Taylor

NIH Workshop on Cloud-Based Platforms Interoperability

Interoperability between Kids First & Undiagnosed Diseases Network (UDN) Data via dbGaP/SRA

Valerie Cotton & Allison Heath

Use Case: Enable researchers to easily co-analyze data from Kids First & the Undiagnosed Disease Network in the cloud to leverage large-scale pediatric cohorts from Kids First to resolve variants of unknown significance in UDN cases.

Kids First: The goal of Kids First is to help researchers uncover new insights into the biology of childhood cancer and structural birth defects.

UDN: The Undiagnosed Diseases Network (UDN) is an initiative to facilitate the diagnosis of conditions that have eluded diagnosis through the coordinated action of leading clinical and research centers.

UDN & Pediatric Genomics

18%

OF PARTICIPANTS WHO UNDERWENT GENOME SEQUENCING HAVE AT LEAST ONE DIAGNOSIS MADE THROUGH SEQUENCING

GENOME SEQUENCING

1,142 participants (716 children and 426 adults) have undergone genome sequencing. Many of these participants had non-diagnostic exome sequencing prior to enrollment in the UDN. The most common symptom category for participants undergoing genome sequencing is neurology (51%), followed by multiple congenital anomalies (9%).

- Data access provided by: <u>dbGaP Authorized Access</u>
- Release Date: September 27, 2021
- Embargo Release Date: September 27, 2021
- Data Use Certification Requirements (DUC)
- Public Posting of Genomic Summary Results: Allowed
- Use Restrictions

Consent group	Is IRB required?	Data Access Committee	Number of participants
General Research Use 🥹	No	National Human Genome Research Institute (nhgridac@mail.nih.gov)	4239

Scientific Narrative (specific use case)

...To address the challenge of VUS's, we have developed a pipeline to assess variants found on clinical sequencing using biobank cohorts with linked phenotyped data.

Our pipeline creates a <u>phenotype risk score (PheRS)</u> of the proband based on their clinical presentation described in human phenotype ontology terms (HPO). We then apply the PheRS to the biobank cohort, such that individuals with many overlapping features have a high PheRS, and those with no or few overlapping features have a low score. We then identify variant matched individuals present in the biobank cohort, and test if the variant matched individuals have unexpectedly elevated phenotype risk scores.

We have been using this pipeline to analyze **Undiagnosed Disease Network (UDN)** patients, using a biobank cohort called BioVU... We believe that expanding our search for variant matched individuals to a large cohort like **Kids First** would enable us better interpret candidate variants for unsolved UDN cases.....

Lisa Bastarache

Overview of Standards Used

4,000+ genomes

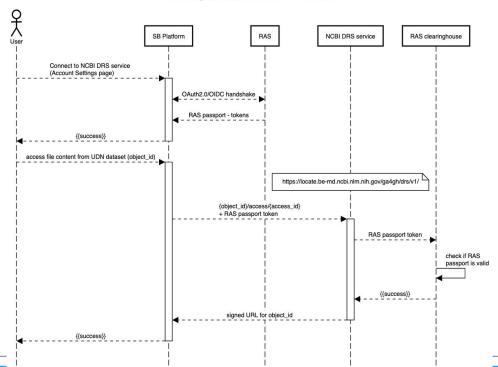
Up to 24,000 genomes

Solution Matrix

	Kids First Data Resource	NLM/NCBI	Analysis Tools
Genomic data	CAVATICA already integrated with the Kids First/Gen3 DRS server. RAS Milestone 3 is underway.	Connect CAVATICA to dbGaP DRS server, using RAS v1.1 Passports - Requires BAMs in S3 storage (US East1 to avoid egress)	Variant calling and searching across UDN & Kids First to identity variants of unknown significance (VUSs) underlying undiagnosed conditions and "matched" cases in Kids First
Phenotypic data	CAVATICA is building a FHIR client to ingest from the Kids First FHIR-based data service	dbGaP on FHIR is in development. FHIR & RAS integration will be needed for controlled-access phenotypes	PheRS to compare phenotypes of individuals with the same/similar VUSs

Collaboration Matrix

	Kids First Data Resource	NLM/NCBI	Tester/User
Genomic data	Michele Mattioni & Jack DiGiovanna & Adam Resnick	Kurt Rodarmer & Yuriy Skripchenko	Yuankun Zhu & Anne Deslattes Mays
Phenotypic data	Allison Heath & Robert Carroll	Liz Amos & Mike Feolo	Lisa Bastarache

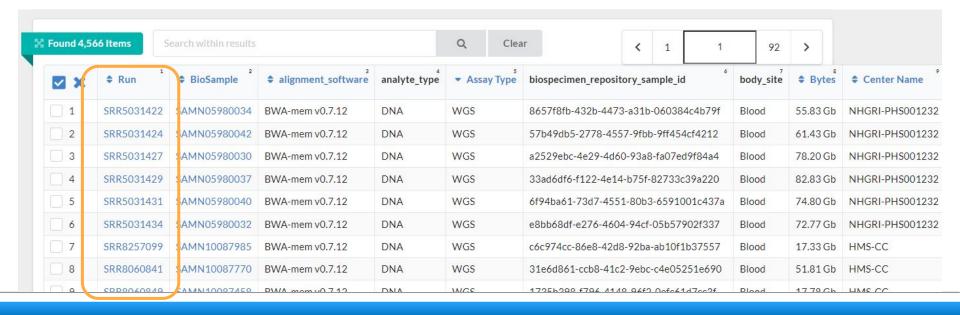


Genomic Data Interoperability

Goal: Enable a user to Access the UDN genomic data via DRS, using RAS Passport

Accessing UDN data on NCBI DRS service

CAVATICA: RAS Connection


DRS Endpoint	Account	Expires	
drs://ga4gh-api.sb.biodatacatalyst.nhlbi.nih.go	ov mmattioni	Oct. 23, 2021 14:04	② Reconnect ■
connect your Cancer Genomics Cloud account			_earn more.
DRS Endpoint	Account	Expires	
drs://cgc-ga4gh-api.sbgenomics.com	mmattioni	Oct. 23, 2021 14:05	⊘ Reconnect •••

Seven Bridges
 identified solution to
 add a **new "card"** in
 the Account DataSets
 configuration tab

- 1. Use NCBI Run Selector to obtain a manifest which contains SRA Runs
- 2. Use the IDX service to obtain the DRS links connected with the SRA Runs
 - Note: The DRS Links are offered in bundles, which Seven Bridges needs to build support for
 - At the moment Seven Bridges extract the bundles, and then obtains the DRS pointer to the file
- 3. Import the DRS File into Cavatica

Draft Approach for UDN Data Findability

The dataset will be findable/searchable as a CAVATICA Public Project (dbGaP approval still required). The DRS file would be built into the Project.

CAVATICA	Projects ▼ Data ▼	Public Apps Pul	blic Projects	Developer ▼	Controlled project
		Public Projects			
Project Name	Location	Created By	Created	d On	Actions
UDN	AWS (us-east-1)	cavatica	Jul. 26,	2021 9:44	Copy project
Data Interoperability	AWS (us-east-1)	sevenbridges	Jun. 24,	2021 11:27	Copy project .
OpenPBTA Open Access	AWS (us-east-1)	cavatica	Feb. 3,	2021 11:39	Copy project
kf-references REFERENCES KIDS FIRST KFDRC	AWS (us-east-1)	kfdrc-harmonizatio	n Sep. 2,	2020 16:24	Copy project

Variant Identification

- For functional equivalence, call UDN variants using Kids First workflows
- Use <u>Kids First Portal variant search</u> to identify datasets of interest → Apply for those datasets in dbGaP
- Use Kids First VCFs to identify variant matched individuals
- Run PheRS

Variant	Туре	dbSnp	Consequences	CLINVAR	Studies	Participants
chrX:g.48792004del	deletion		• frameshift_variant <u>GATA1</u> G126X		1	1 / 4843
chrX:g.48794116del	deletion	157)	• frameshift_variant <u>GATA1</u> G397X	277	1	1 / 4843
chrX:g.48791978C>A	SNV	1622	 missense_variant GATA1 Q119K 	-22	1	1 / 4843
chrX:g.48792194C>T	SNV	<u>rs140561920</u>	• missense_variant GATA1 R191C	<u>Benign</u>	1	4 / 4843

Solution Matrix

	Kids First Data Resource	NLM/NCBI	Analysis Tools
Genomic data	CAVATICA already integrated with the Kids First/Gen3 DRS server. RAS Milestone 3 is underway.	Connect CAVATICA to dbGaP DRS server, using RAS v1.1 Passports - Requires BAMs in S3 storage (US East1 to avoid egress)	Variant calling and searching across UDN & Kids First to identity variants of unknown significance (VUSs) underlying undiagnosed conditions and "matched" cases in Kids First
Phenotypic data	CAVATICA is building a FHIR client to ingest from the Kids First FHIR-based data service	dbGaP on FHIR is in development. FHIR & RAS integration will be needed for controlled-access phenotypes	PheRS to compare phenotypes of individuals with the same/similar VUSs

PheRS pipeline

- R-based tool creates a phenotype risk score (PheRS) of the proband based on their clinical presentation described in human phenotype ontology terms (HPO).
 - **√** Kids First already maps phenotypes to HPO
- Apply PheRS to the cohort, such that individuals with many overlapping features have a high PheRS, and those with no or few overlapping features have a low score.
- Identify variant matched individuals and test if they have unexpectedly elevated phenotype risk scores
- Make available to the community and path for utilization/comparison with other work like <u>LIRICAL</u>

Proband phenotype

Clinical symptoms and physical findings

GROWTH PARAMETERS

Failure to thrive

CARDIOVASCULAR

Patent ductus arteriosus

GASTROINTESTINAL

Elevated hepatic transaminase

Gastroesophageal reflux

GENITOURINARY

Hydrocele testis

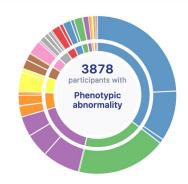
BEHAVIOR, COGNITION AND DEVELOPMENT

Global developmental delay

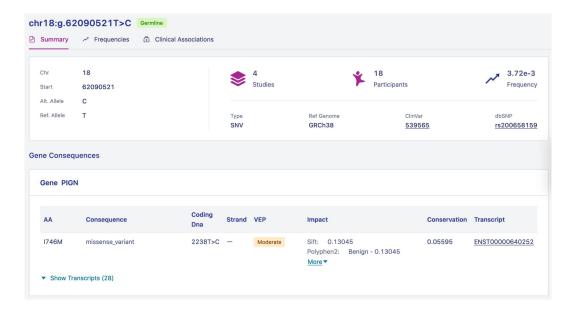
Delayed speech and language development

DIGESTIVE SYSTEM

Hepatomegaly


METABOLISM/HOMEOSTASIS

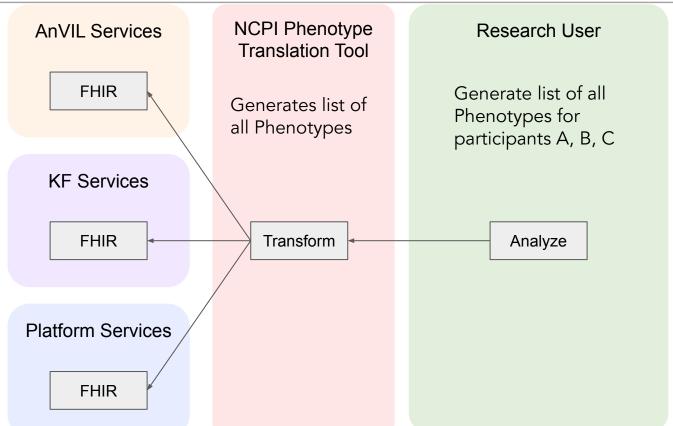
Recurrent hypoglycemia Neonatal hypoglycemia


Candidate variants

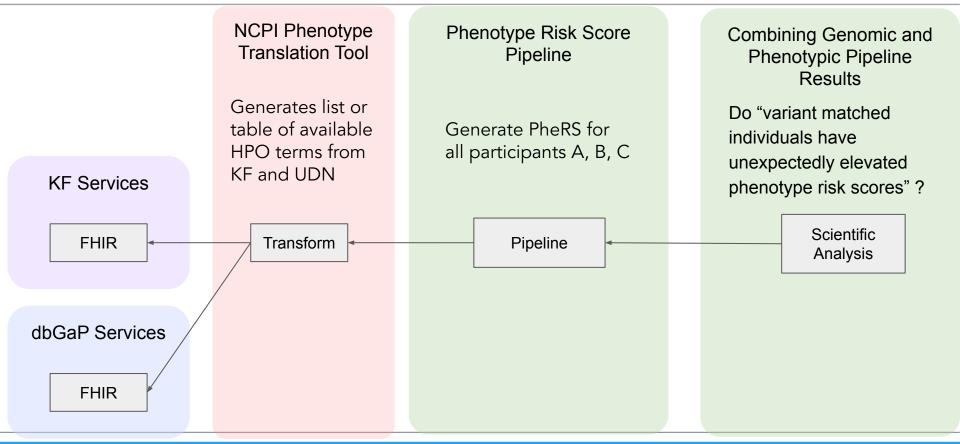
leterozygous	Variants					
Gene	Chr Position rs#	Change	Effect	Proband	Mother (Unaff)	Father (Unaff)
COL9A1 NM_001851.4	chr6	$A \rightarrow T$	splice donor 10.9>2.7	•0	00	•0
	70991091	c.876+2T>A				
	rs149830493					
ELN NM_000501	chr7	$G \rightarrow A$	missense	•0	00	•0
	73470684	c.1234G>A				
	rs375116795	p.Gly412Arg				
PIGN NM_012327	chr18	T → C	missense	•0	00	•0
	59757754	c.2238A>G				
	rs200658159	p.lle746Met				
POLG NM_002693.2	chr15	$G \rightarrow C$	missense	•0	00	•0
	89872002	c.1084C>G				
	rs763248358	p.Leu362Val				
RFT1 NM_052859.3	chr3	C → T	missense		•0	00
	53140879	c.782G>A		•0		
	rs374781452	p.Arg261GIn				

Observed Phenotypes

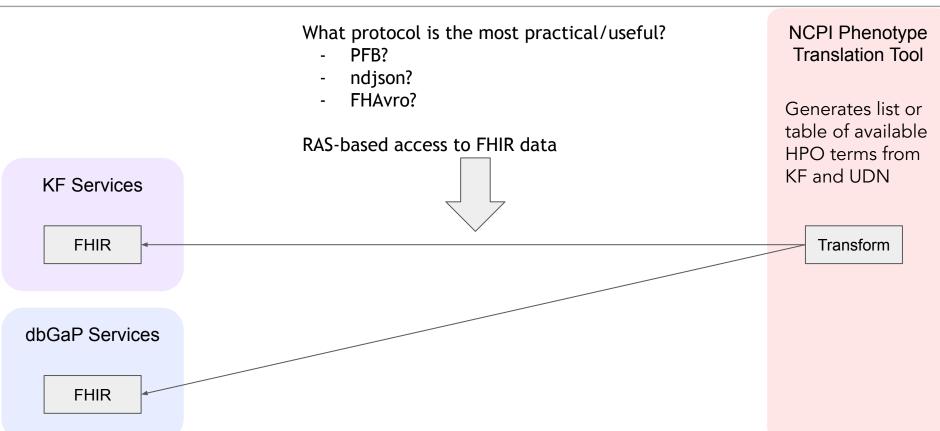
27	3878
0	1480
0	1328
41	957
15	431
7	355
25	341
80	327
0	303
0	278
8	266
1	196
53	190
0	90
0	59
0	41
0	26
0	24
0	18
0	10
0	9
	0 0 41 15 7 25 80 0 0 8 1 1 53 0 0 0



Driving Tool / Service Layers: General



Driving Tool / Service Layers: Use Case



Concrete Progress on Each Step

Concrete Progress on Each Step

NCPI Phenotype Translation Tool

Generates list or table of available HPO terms from KF and UDN

Transform

What current cloud workspace tooling fits best here? Do we need to be able to support additional capabilities?

Phenotype-based Pipeline

Generate PheRS for all participants A, B, C

Automated Pipeline

Concrete Progress on Each Step

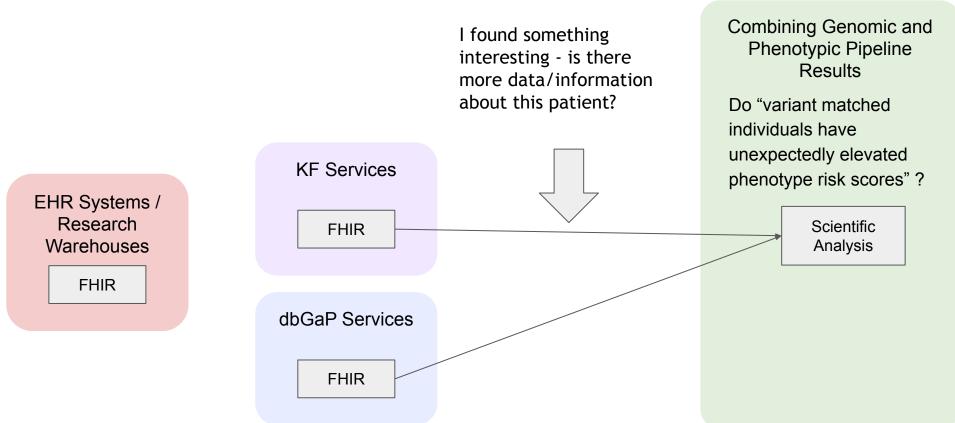
Phenotype-based Pipeline

Generate PheRS for all participants A, B, C

Automated Pipeline

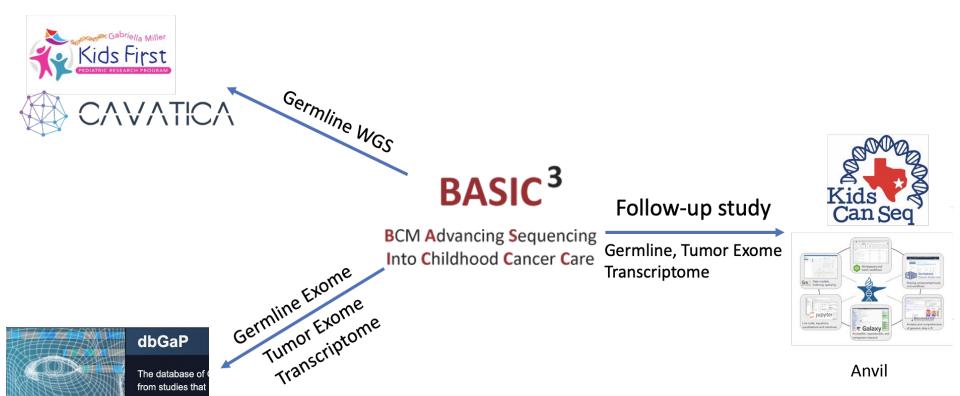
May be the most well-defined? Happens in a R Studio or Jupyter notebook environment?

Combining Genomic and Phenotypic Pipeline Results


Do "variant matched individuals have unexpectedly elevated phenotype risk scores"?

Scientific Analysis

Doors to New Capabilities



Leveraging Functionally Equivalent Pipelines for Long-Read Data on Different Systems

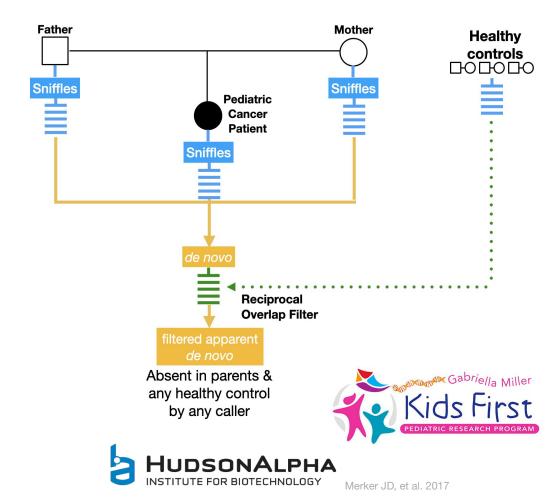
Owen Hirschi Dr. Sharon Plon's Lab Baylor College of Medicine


The Plon lab utilizes multiple platforms to store and analyze sequencing data from pediatric cancer cohorts

BASIC3 is undergoing Pacific Biosciences HiFi CCS long-read sequencing

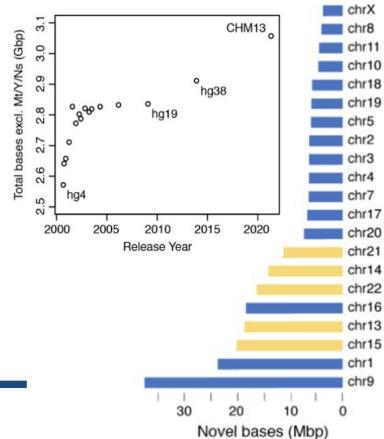
Long-read sequencing allows for greater detection of SV

Structural Variants Observed



Allows for the comparison of long-read and short-read structural variant calling

Algorithms being utilized:



Novel CHM13 reference genome by the Telomere to Telomere (T2T) consortium

TELOMERE-TO-TELOMERE

The complete sequence of a human genome

Sergey Nurk^{1,*}, Sergey Koren^{1,*}, Arang Rhie^{1,*}, Mikko Rautiainen^{1,*}, Andrey V. Bzikadze², Alla Mikheenko³, Mitchell R. Vollger⁴, Nicolas Altemose⁵, Lev Uralsky^{6,7}, Ariel Gershman⁸, Sergey Aganezov⁹, Savannah J. Hoyt¹⁰, Mark Diekhans¹¹, Glennis A. Logsdon⁴, Michael Alonge⁹, Stylianos E. Antonarakis¹², Matthew Borchers¹³, Gerard G. Bouffard¹⁴, Shelise Y. Brooks¹⁴, Gina V. Caldas¹⁵, Haoyu Cheng^{16,17}, Chen-Shan Chin¹⁸, William Chow¹⁹, Leonardo G, de Lima¹³, Philip C, Dishuck⁴, Richard Durbin²¹, Tatiana Dvorkina³, Ian T. Fiddes²², Giulio Formenti^{23,24}, Robert S. Fulton²⁵, Arkarachai Fungtammasan¹⁸, Erik Garrison^{11,28}, Patrick G.S. Grady¹⁰, Tina A. Graves-Lindsay²⁷, Ira M. Hall²⁸, Nancy F. Hansen²⁹, Gabrielle A. Hartley¹⁰, Marina Haukness¹¹, Kerstin Howe¹⁹, Michael W. Hunkapiller³⁰, Chirag Jain^{1,31}, Miten Jain¹¹, Erich D. Jarvis^{23,24}, Peter Kerpedjiev³², Melanie Kirsche⁹, Mikhail Kolmogorov³³, Jonas Korlach³⁰, Milinn Kremitzki²⁷, Heng Li^{16,17}, Valerie V. Maduro³⁴, Tobias Marschall³⁵, Ann M. McCartney¹, Jennifer McDaniel³⁶, Danny E. Miller^{4,37}, James C. Mullikin^{14,29}, Eugene W. Myers³⁸, Nathan D. Olson³⁶, Benedict Paten¹¹, Paul Peluso³⁰, Pavel A. Pevzner³³, David Porubsky⁴, Tamara Potapova¹³, Evgeny I. Rogaev^{6,7,39,40}, Jeffrey A. Rosenfeld⁴¹, Steven L. Salzberg^{9,42}, Valerie A. Schneider⁴³, Fritz J. Sedlazeck⁴⁴, Kishwar Shafin¹¹, Colin J. Shew²⁰, Alaina Shumate⁴², Yumi Sims¹⁹, Arian F. A. Smit⁴⁵, Daniela C. Soto²⁰, Ivan Sovic^{30,46}, Jessica M. Storer⁴⁵, Aaron Streets^{5,47}, Beth A. Sullivan⁴⁸, Françoise Thibaud-Nissen⁴³, James Torrance¹⁹, Justin Wagner³⁶, Brian P. Walenz¹, Aaron Wenger³⁰, Jonathan M. D. Wood¹⁹, Chunlin Xiao⁴³, Stephanie M. Yan⁴⁹, Alice C. Young¹⁴, Samantha Zarate⁹, Urvashi Surti⁵⁰, Rajiv C. McCoy⁴⁹, Megan Y. Dennis²⁰, Ivan A. Alexandrov^{3,7,51}, Jennifer L. Gerton¹³, Rachel J. O'Neill¹⁰, Winston Timp^{8,42}, Justin M. Zook³⁶, Michael C. Schatz^{9,49}, Evan E. Eichler^{4,24,†}, Karen H. Miga^{11,†}, Adam M. Phillippy^{1,†}

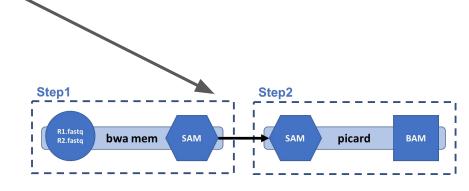
doi.org/10.1101/2021.05.26.445798

chr12 chr6

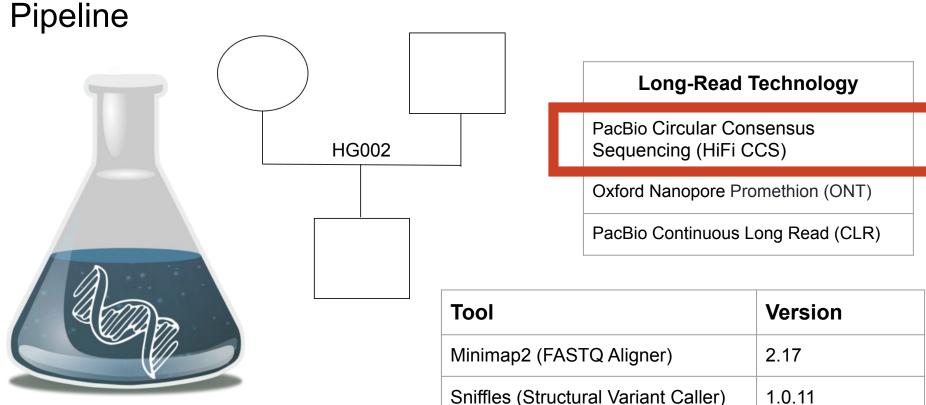
The tools are uploaded in different languages across platforms

SevenBridges

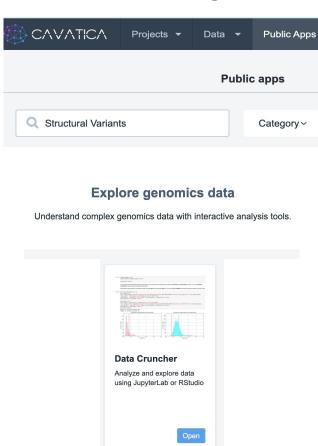
Tools are written in **Common** Workflow Language (CWL)

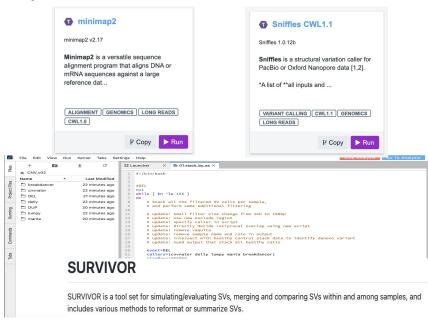

Deduped BAM RWA MEM Bundle 0.7.17 Picard MarkDuplicates CWL1.0

BWA MEM


&

Picard


GIAB Benchmarking Data: HG002 Trio and Benchmarking



SURVIVOR (SV merging)

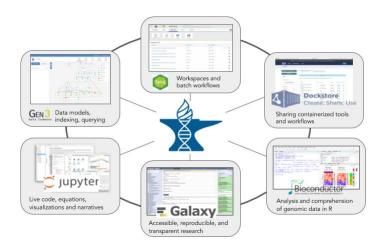
1.07

Creation of Long-Read SV Calling Pipeline on CAVATICA

Proband

THE THE PERSON NAMED AND POST OFFICE ADDRESS OF THE PERSON NAMED AND POST OF THE PERS

Father


IGV images

Mother

HG002-Trio processed on Anvil as a part of T2T studies

Telomere-to-Telomere (T2T) Consortium's AnVIL_T2T Workspace

A complete reference genome improves analysis of human genetic variation

Sergey Aganezov, Stephanie M. Yan, Daniela C. Soto, Melanie Kirsche, Samantha Zarate, Pavel Avdeyev, Dylan J. Taylor, Kishwar Shafin, Alaina Shumate, Chunlin Xiao, Justin Wagner, Jennifer McDaniel, Nathan D. Olson, Michael E.G. Sauria, Mitchell R. Vollger, Arang Rhie, Melissa Meredith, Skylar Martin, Joyce Lee, Sergey Koren, Jeffrey A. Rosenfeld, Benedict Paten, Rayan Layer, Chen-Shan Chin, Fritz J. Sedlazeck, Nancy F. Hansen, Danny E. Miller, Adam M. Phillippy, Karen H. Miga, Rajiv C. McCoy, Megan Y. Dennis, Michael C. Schatz Moi: https://doi.org/10.1101/2021.07.12.452063

This article is a preprint and has not been certified by peer review [what does this mean?].

Jasmine: Population-scale structural variant comparison and analysis

© Melanie Kirsche, © Gautam Prabhu, © Rachel Sherman, © Bohan Ni, © Sergey Aganezov, © Michael C. Schatz

doi: https://doi.org/10.1101/2021.05.27.445886

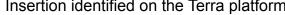
This article is a preprint and has not been certified by peer review [what does this mean?].

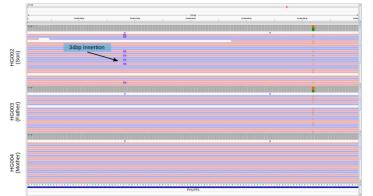
Preliminary Results:

Post Minimap2 alignment:

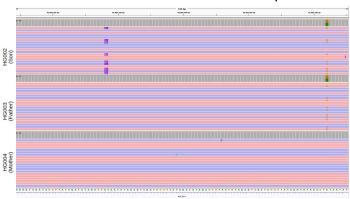
Sample	Coverage (Terra.Bio)	Coverage (CAVATICA)
HG002	35.25	35.03
HG003	33.68	33.47
HG004	33.18	32.99

Post Sniffles variant calling:


Sample	Raw Structural Variant Count (Terra.Bio)	Raw Structural Variant Count (CAVATICA)	Difference
HG002	92,350	96,977	+4,627
HG003	90,357	94,361	+4,004
HG004	88,803	93,159	+4,356


Discordant variant calls using SURVIVOR:

Discordant variant cans using Cortviv Cit.			
Sample	Variant Count (Terra.Bio)	Variant Count (CAVATICA)	Difference
Only in HG002	3,934	4,307	+373
Only in HG003	9,478	10,255	+777
Only in HG004	9,468	10,486	+1,018


De novo variants examples:

Insertion identified on the CAVATICA platform

Summary

 Long-read sequence analysis tools uploaded on these platforms exist in different coding languages

 We have set up a functional long-read sequencing analysis pipeline on the CAVATICA platform

 We have been able to identify de novo variants previously found via pipelines on the Terra platform

 We have also identified a 5 to 10% difference in raw and merged structural variants across the two platforms

Ongoing Work

 Understand differences in called de novo events and aligned sequence files in HG002 trio on both platforms

 Determine if there is an larger data set we can process on CAVATICA and Terra respectively to test full functional equivalence

 Perform long-read sequence analysis on BASIC3 cohort using the pipeline on CAVATICA to identify novel de novo structural variant

Acknowledgments

Plon Lab members:

Sharon Plon, MD, PhD

Saumya Sisoudiya

P. Adam Weinstein

Deborah Ritter, PhD

Xi Luo, PhD

Ryan Zabriskie

Funding:

SevenBridges

BASIC3 Co-PI:

William Parsons, MD, PhD

Schatz Lab:

Michael Schatz, PhD

Melanie Krishce

Seven Bridges:

Jack DiGiovanna, PhD

Jelena Randjelovic, PhD

CULLEN

BASIC3: NHGRI/NCI 1U01HG006485

KF BASIC3:1 X01 HL136998-01

CTR-CAQ T32: 1T32GM136554-01

F31: 5F31CA265163-02

Conducting reproducible science in PIC-SURE interoperating with Seven Bridges/Terra

Simran Makwana and Paul Avillach

Overview

- PIC-SURE Overview
- Use Case 1: PIC-SURE and Seven Bridges ORCHID study reproducibility
- Use Case 2: PIC-SURE and Terra HCT for SCD
- PIC-SURE as a search tool across NCPI platforms

Patient-centered Information Commons: Standardized Unification of Research Elements

https://picsure.biodatacatalyst.nhlbi.nih.gov/

	<u>IILLPS.//picsure.biodatacatatyst.i</u>	IIIDI.IIII.gov/	
	User Interface (UI)	Application Programming Interface (API)	
Advantages	Point-and-click interface to explore variables and aggregate counts	Use code to extract data directly into workspace	
Access point	PIC-SURE website	Didactic Jupyter notebooks in R, python, R Markdown files	
Building queries	Query Builder tool	Python and R functions	
Extracting data	Data can be downloaded or exported to an analysis workspace	Run query in python or R to export data to workspace	
Data	Integrates clinical and genomic datasets across BioData O TOPMed and TOPMed-related studies O COVID-19 studies	a Catalyst, including:	
	o BioLINCC		

Patient-level curation and ingestion of each phenotypic variable and genomic variant Variable, table and study metadata ingested and indexed for search.

Decoded variables from all studies made available to the user for cohort filtering and export

PIC-SURE Open and Authorized Access

Authorized Access

Explore Now

29 Studies 234,781 Participants

dbGap Approval Required

Authorized Phenotypic and Genomic Datasets

Aggregate Counts

Patient Level Data

Download Authorized Datasets

R and Python API Access

Open Access

Explore Now

56 Studies 279,145 Participants

No Authorization Required

All Phenotypic Datasets Available in

PIC-SURE

Aggregate Counts Only

Anyone with an eRA Commons ID can access! https://picsure.biodatacatalyst.nhlbi.nih.gov/

Framingham Phenotype Datasets Table of Contents

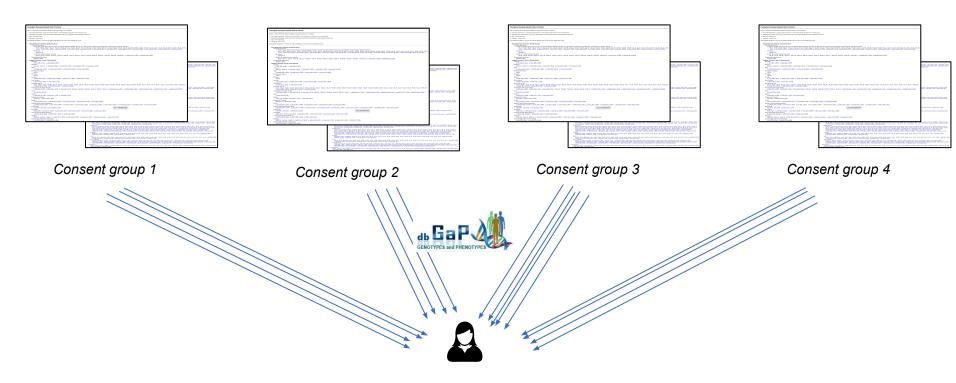
Below is a listing of FHS SHARe datasets. Datasets are grouped according to four categories:

- 1. Clinic Exam Questionnaire (Interview and Physical Exam) Data collected during FHS clinic exam or ancillary study
- 2. Validated through medical records review and/or derived and/or scored and/or abstracted from other datasets for ease of use
- 3. Tests Non-invasive tests

Medications

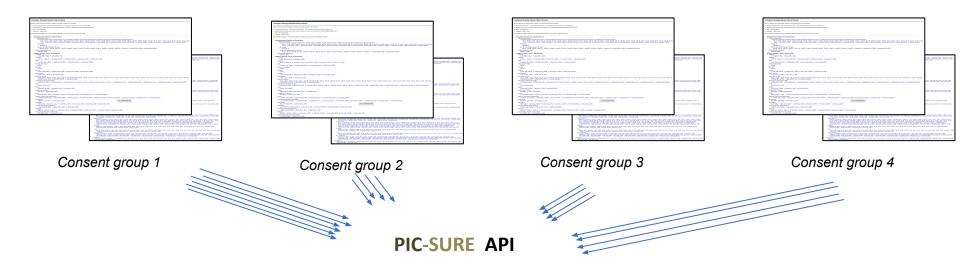
Neuropsychology Brain MRI, Scored Variables vr_np_2013_a_0960s vr_npdates_2014_a_0962s

4. Laboratory - blood or urine


Some datasets may appear in more than one category depending upon the nature of the variables they contain.

vr wkthru ex02 3b 0464s vr wkthru ex09 1 1001s vr wkthru ex32 0 0997s

meds0 28s meds1 8s meds3 1s vr meds 2011 m 0675s vr meds ex09 1b 0879s vr meds ex31 0 0763s vr meds ex01 3b 0825s vr meds ex03 7 0535s


Clinical data in dbGAP is stored in hundreds of files For EACH consent group **Framingham heart study**

Clinic Questionnaire (Interview and Physical Exam) Clinic Exam Questionnaire MD Interview, Physical Exam, Examiner's Opinion, and Clinical Diagnostic Impression; Non-MD / Non-medical Interview / Self-report and Physical Exam / Anthropometrics / Observed Performance ex0_7s ex0_8s ex0_9s ex0_10s ex0_11s ex0_12s ex0_13s ex0_14s ex0_15s ex0_16s ex0_17s ex0_18s ex0_19s ex0_21s ex0_21s ex0_22s ex0_23s ex0_24s ex0_25s ex0_25s ex0_25s ex0_27s ex0_28s ex1_1s ex1_2s ex1_3s ex1_4s ex1_5s ex1_6s ex1_7s ex1_8s ex0_18s e ex3_1s e_exam_ex01_7_0020s e_exam_ex01_7_0020s e_exam_ex02_7_0003s e_exam_ex03_7_0426s e_exam_ex09_0_0274s e_exam_ex09_1b_0844s e_exam_ex01_2_0813s e_exam_ex01_72_0652s e_exam_ex02_0939s e_exam_ex31_0_0738s MD Interview menarche1_7s Non-MD / Non-medical Interview / Self-report act1_5s act1_6s dis0_18s psych1_3s sf36_1_6s bwgt1_6s resp1_6s ffreq1_3s ffreq1_5s ffreq0_20s ffreq0_21s ffreq0_22s menarche1_7s q_mnshist_2001_1_0650s q_psysocalp_ex10_0_0657s Neuropsychology Questionnaire obsperform 2005s Validated / Reviewed / Scored / Abstracted Data Foot Study vr foot 2008 m 0611s vr foot2 2008 m 0651s Menonause mnp0 14s meno1 8s vr meno ex02 3 0653s vr meno ex03 7 0916s vr meno ex02 2 0719s vr meno ex02 72 0720s vr_crdstrex_ex02_3_0821s vr_ceradstr_ex02_3_0807s vr_mmse_ex09_1b_0943s vr_mmse_ex32_0_0945s Rheumatic Heart Disease rhd0_9s ICD Codes icd0_19s Dementia vr_npka_1978_0_0872s vr_cogstadr_2014_m_0966s vr_demnp_2014_m_0968s vr_demne_2014_m_0967s Atrial Fibrillation vr_af4srv_2012_a_0970s_vr_afcum_2016_a_1782s ex0_7s ex0_8s ex0_9s ex0_10s ex0_11s ex0_12s ex0_13s ex0_14s ex0_15s ex0_16s ex0_17s ex0_18s ex0_19s ex0_21s ex0_22s ex0_22s ex0_22s ex0_23s ex0_24s ex0_25s ex0_27s ex1_1s ex1_2s ex1_3s ex1_4s ex1_5s ex1_6s ex1_7s ex3_1s birthyr_alls vr_ctdates_2011_m_0715s vr_dates_2014_a_0912s vr_survaf_2014_a_0987s Food Frequency with Derived Variables vr_ffreq_ex01_3_0587s vr_ffreq_ex08_1_0615s vr_ffreq_ex02_3_0713s ffreq0_20s ffreq0_20s ffreq0_21s ffreq1_5s ffreq1_5s ffreq1_7s vr_dgal2010_ex07_1_1108s vr_dgal2010_ex08_1_1009s vr_dgal2010_ex05_1_1013s vr_dgal2010_ex01_3_1078s vr_dgal2010_ex02_3_0996s Cancer vr_cancer_2013_a_0018s Diabetes vr_dlab_ex02_3b_0388s vr_dlab_ex09_1_1002s vr_dlab_ex28_0_0601s Cardiovascular Procedures cabg_2007s vr_cvdproc_2016_a_1028s Survival vr_survcvd_2014_a_1023s vr_survdth_2014_a_1025s vr_survstk_2014_a_1031s vr_survstkt_2014_a_1030s vr_survaf_2014_a_0987s Endpoints: Cardiac/Cerebrovascular/Death vr_soepedvt_2012_m_0756s vr_chfinit_2013_a_0828s vr_vte_2014_a_0913s vr_survcvd_2014_a_1023s vr_survdth_2014_a_1025s vr_soe4srv_2014_a_1027s vr_survstk_2014_a_1031s vr_soe_2016_a_1073s vr_soechf_2016_a_1070s Stroke Related Link to associated table psipi_2003s psipr_2003s vr_survstk_2014_a_1031s foapain_2001s vr_fxrev_2011_0_0613s vr_pase_ex02_3_0642s vr_fxrev_2012_0_0746s vr_fxrev_2013_3_0663s vr_fxrev_2013_1_0847s Commonly Used Risk Factors (Workthru)

Investigator access <u>FILES</u> based on study and consent groups per study. Then he needs to decrypt the files and <u>COMBINE</u> them to run any analysis

On a dbGAP authorized project an investigator may have access to consents 1 and 2 and on an other dbGAP project he may have access to consents 2,3 and 4

Via PIC-SURE API an Investigator access <u>VARIABLES</u> (and not <u>FILES</u>) based on study and consent groups per study.

Everything is <u>ALREADY COMBINED</u> them to run any analysis

He can SEARCH and RETRIEVE across all data he is authorized

On a dbGAP authorized project an investigator may have access to consents 1 and 2 and on an other dbGAP project he may have access to consents 2,3 and 4

Use Case 1

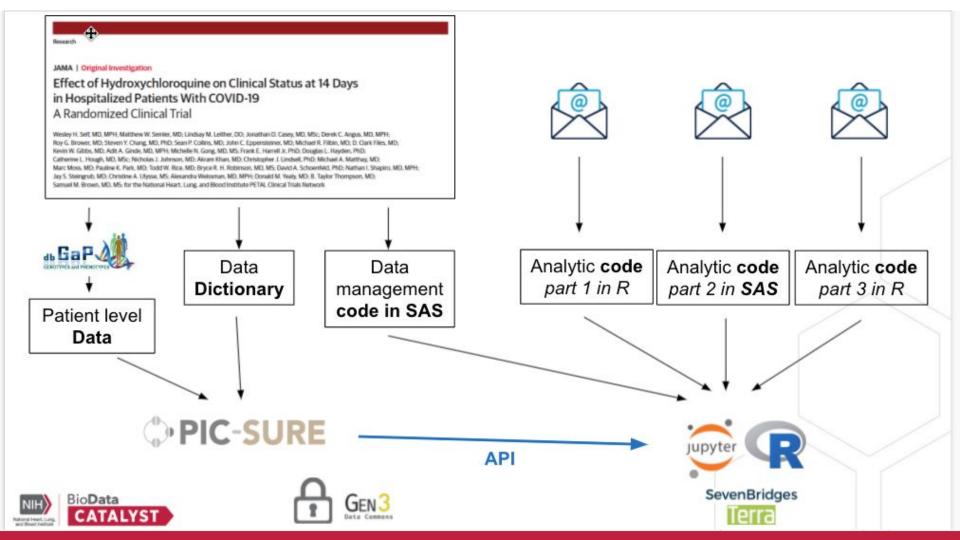
Using PIC-SURE to reproduce the ORCHID Study on Seven Bridges

ORCHID Study Example

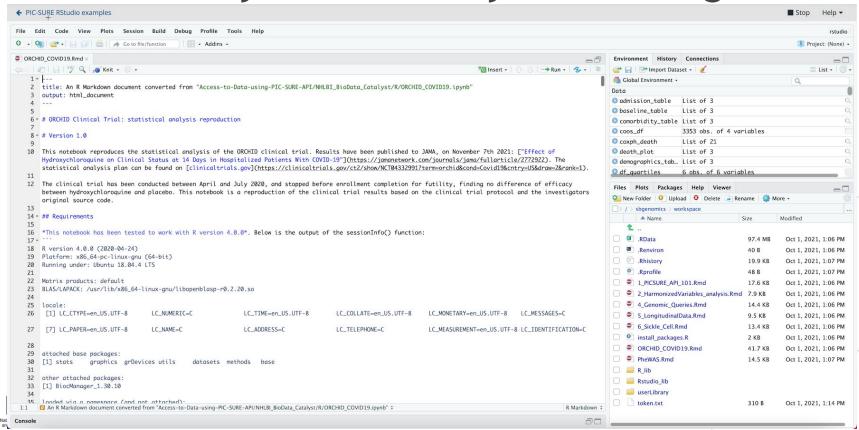
We have utilized PIC-SURE and Seven Bridges in BioData Catalyst to successfully reproduced the results and analysis of the following paper:

Outcomes Related to COVID-19 Treated with Hydroxychloroquine among In-patients with Symptomatic Disease (ORCHID) Study:

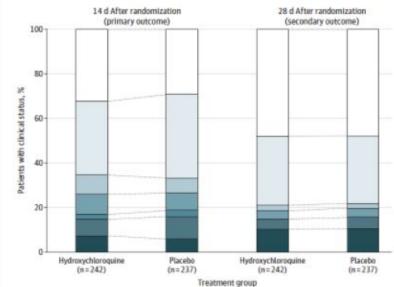
Research


Published online: November 9, 2020

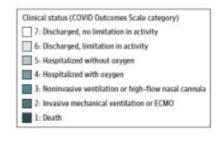
JAMA | Original Investigation


Effect of Hydroxychloroquine on Clinical Status at 14 Days in Hospitalized Patients With COVID-19
A Randomized Clinical Trial

Wesley H. Self, MD, MPH; Matthew W. Semler, MD; Lindsay M. Leither, DO; Jonathan D. Casey, MD, MSc; Derek C. Angus, MD, MPH; Roy G. Brower, MD; Steven Y. Chang, MD, PhD; Sean P. Collins, MD; John C. Eppensteiner, MD; Michael R. Filbin, MD; D. Clark Files, MD; Kevin W. Gibbs, MD; Adit A. Ginde, MD, MPH; Michael R. Gong, MD, MS; Frank E. Harrell Jr, PhD; Douglas L. Hayden, PhD; Catherine L. Hough, MD, MSc; Nicholas J. Johnson, MD; Akram Khan, MD; Christopher J. Lindsell, PhD; Michael A. Matthay, MD; Marc Moss, MD; Pauline K. Park, MD; Todd W. Rice, MD; Bryce R. H. Robinson, MD, MS; David A. Schoenfeld, PhD; Nathan I. Shapiro, MD, MPH; Jay S. Steingrub, MD; Christine A. Ulysse, MS; Alexandra Weissman, MD, MPH; Donald M. Yealy, MD; B. Taylor Thompson, MD; Samuel M. Brown, MD, MS; for the National Heart, Lung, and Blood Institute PETAL Clinical Trials Network

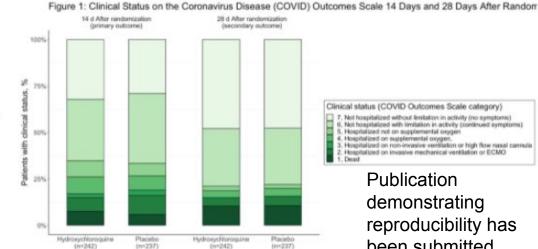


ORCHID Study RStudio Example Available in BioData Catalyst Powered by Seven Bridges



BioData CATALYST
Powered by PIC-SURE

December 9, 2020



JAMA

Published online: November 9, 2020

Treatment group

Clinical status (COVID Outcomes Scale category)

Not hospitalized without limitation in activity (no symptoms) Not hospitalized with limitation in activity (continued symptoms)

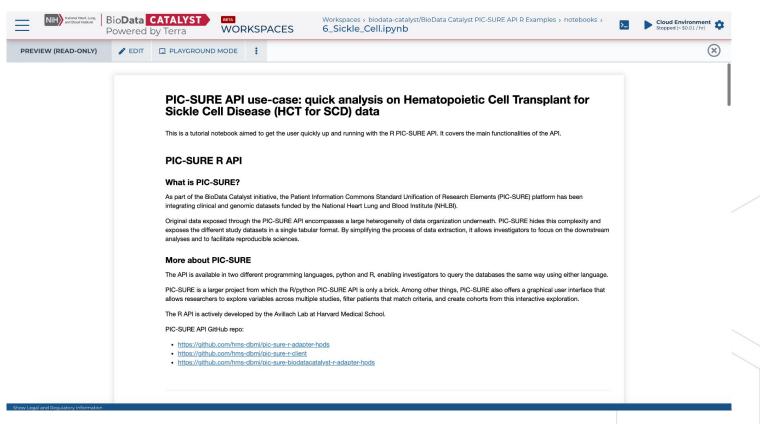
Hospitalized not on supplemental oxygen

Hospitalized on supplemental oxygen.

Hospitalized on non-invasive ventilation or high flow russal cannula Hospitalized on invasive mechanical ventilation or ECMO

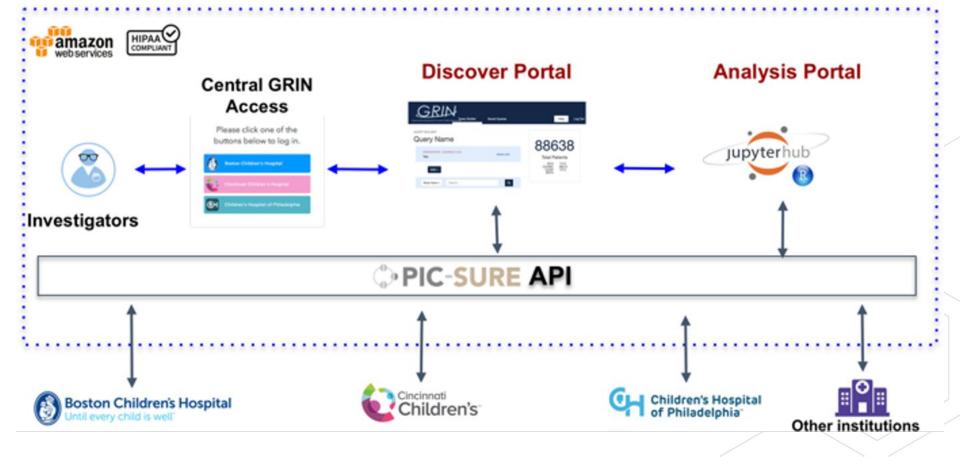
Publication demonstrating reproducibility has been submitted.

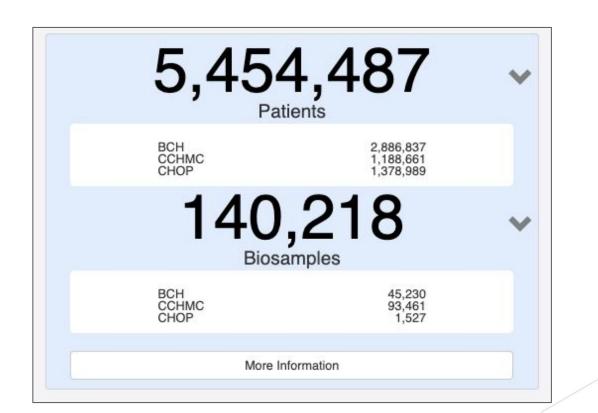
Use Case 2

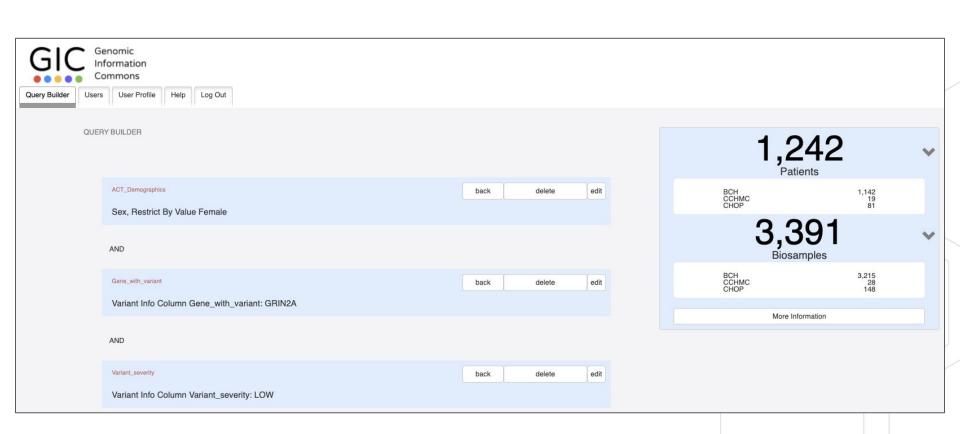

Using PIC-SURE to reproduce and expand analysis of the HCT for SCD Study on Terra

Hematopoietic Cell Transplant for Sickle Cell Disease Study Use Case

- Collaborated with a Sickle Cell Disease (SCD) researcher to use PIC-SURE and Terra to conduct an analytic research study.
- Introduced researcher to BioData Catalyst to use tools in PIC-SURE and Terra to build upon their existing work
- Created a jupyter notebook using the PIC-SURE API to build a cohort and perform analysis in Terra
 - Extracted the data dictionary
 - Built queries to retrieve data
 - Successfully tested reproducibility and validated findings of original study in BDCatalyst
 - Conducted an additional analysis using the PIC-SURE API and Terra to produce new research findings
- Manuscript in preparation


HCT for SCD Study Example Available in BioData Catalyst Powered by Terra




U01

The Genomics Research and Innovation Network. Genet Med. 2019 Sep 4

PIC-SURE As a search tool across NCPI platforms

- **Any Clinical data** (EHR, Registries, clinical trials)
- Any Sequencing data (WES, WGS)
- Any biosamples
- **Any index files** (Radiology, EEG, etc...)

1) Centralized approach

Aggregate Search with
Open PIC-SURE Search in
Authorized Access

Anyone can Explore aggregate data without authorization

API

genomic data to refine cohorts, cohort creation at variable level.

⇒PIC-SURE API

Explore phenotypic and

Investigators.

PIC-SURE HPDS
High Performance Data Store

Workspaces / Analysis Environments

Direct export with PIC-SURE API of selected cohort(s) to chosen analysis environment

Patient level data

2) Federated approach Investigators. PIC-SURE Search in Aggregate Search with Workspaces / Analysis **Authorized Access** Open PIC-SURE **Environments** Direct export with PIC-SURE Anyone can Explore Explore phenotypic and API of selected cohort(s) to aggregate data without genomic data to refine cohorts, chosen analysis environment authorization cohort creation at variable level. Bio**Data** AnVIL CATALYST AllofUs Patient level data stays in each platform **API** PIC-SURE HPDS **PIC-SURE HPDS** PIC-SURE HPDS PIC-SURE HPDS

3) Mixed approach Patient Data stays local / index is centralized

Aggregate Search with Open PIC-SURE

Anyone can Explore aggregate data without authorization

Patient level data stays in each platform

Index of all files centralized

PIC-SURE Search in **Authorized Access**

Investigators.

Explore phenotypic and genomic data to refine cohorts, cohort creation at variable level.

Workspaces / Analysis **Environments**

Direct export with PIC-SURE API of selected cohort(s) to chosen analysis environment

PIC-SURE is a Meta-API

It provides mechanisms to transform, modify, augment existing APIs, including itself. The main enabling mechanism is the **Resource** abstraction.

The **Aggregate Data Sharing Resource** acts as a filter to prevent sharing identifiable data.

The **Passthrough Resource** acts as a proxy authentication mechanism so users don't have to be created in two places.

4) Meta-API approach

Aggregate Search with Open PIC-SURE

Anyone can Explore aggregate data without authorization

Terra, SBG,

PIG-SURE

Gen3,

- Patient level data stays in each platform
- We leverage existing APIs from each platform

PIC-SURE Search in Authorized Access

Investigators.

Explore phenotypic and genomic data to refine cohorts, cohort creation at variable level.

Workspaces / Analysis Environments

Direct export with PIC-SURE API of selected cohort(s) to chosen analysis environment

Kids First API

N3C API

AnVIL API

AnVII

Resources

BioData Catalyst Powered by PIC-SURE User Guide

Access to PIC-SURE API GitHub repository

PIC-SURE YouTube channel

BioData Catalyst GitBook (pending PIC-SURE updates)

PIC-SURE API Documentation

NIH Workshop on Cloud-Based Platforms Interoperability

Synthesize Goals and Next Steps

for the next 6 Months, with focus on driving use cases

Stan Ahalt, Jon Kaltman

Emerging common motif: importance of user-centered, user-friendly design & functionality

PFB:

- 1. Identify and document use cases that would result in "PFB-lite" v PFB
- 2. Differentiate utility of PFB/VDB/etc. vs FHIR
- Clarify what PFB is/is not (<u>Glossary</u>). [<u>Full list here</u>]

FHIR:

- 1. Align on research study and metadata v1 representation (public data)
- 2. Identify roadmaps for platforms around services/use cases/limitations
- 3. Continue work on existing FHIR use cases [full list here]

RAS: Complete current plan and begin planning next phase:

- 1. Solve the challenges of milestone 3 (SSO, etc.) & meet the deadline
- 2. Plan beyond milestone 3: next steps proposal (milestone 4, passport partners expanded outreach) [full list here]

End User Cloud Cost: Help users to adapt to new cloud reality through

- 1. Create free workspaces for training in the cloud
- 2. Budget templates & guides
- 3. End-to-end user stories generation
- 4. "Database" of cost modeling efforts across NCPI
- 5. Long term activities (e.g. NCPI codeathon) [full list here]

Search: Deploy user-centered thinking of Search

- 1. Form a Working Group that will drive the development of use- case driven Search strategy (e.g. develop personas, guide to existing searches/components, etc.)
- 2. Create a list of search components and documentation
- 3. Create a search taxonomy to inform a search roadmap
- Respond to Search RFI
- 5. Define and promote semantic maturity in data to enable search [full list here]

Other Interoperability Efforts: Engage users for

- 1. Testing of current functionality
- 2. Feedback re: new features
- 3. Development of users/use cases to drive new interop features,
- 4. Standardization of Tools/Apps deployment,
- 5. Development of methods to publish completed use cases (to replicate, train, etc) Development of training on interop methods [full list here]

GA4GH: Constantly developing new standards. NCPI members can participate by:

- Getting engaged, and through coordinating our representation and interest in GA4GH across NCPI
- 2. Document the GA4GH standards in use across NCPI and identify future options
- 3. Collecting considerations for new standards to propose to GA4GH [full info here]

FYI: GA4GH Pedigree WG presents a new pedigree ontology (OWL) and a new pedigree model, and their implementations in FHIR on 10/12.

Use Cases:

- Structure now in place to help with coordination and transparency, and extend utility!
- Very exciting to see both a) multiple mature use cases yielding fascinating science AND b) new use cases!
- Data can be called by DRS via distributed pipeline to understand sex as a biological variable
- Complementarity of DRS and FHIR
- Comparing algorithms across platforms to compare results. Continue work to ascertain reasons behind difference in results.
- Meta-API approach across NCPI: a) Use case development, b) where development gets done?

General:

- Remember that we are engaged in cultural change as well as technical changes
- Seek NCPI-wide opportunities to leverage program resources for max impact
- A lot of utility is possible now but in many cases we could use an "easy button"

NIH Closing Thoughts (Kaltman)

Meeting Deliverable: NCPI Glossary

- Remember to keep populating the NCPI Glossary with new words or additional definitions
- We hope this <u>Glossary</u> will be a concrete deliverable at the end of the meeting to help us coalesce around common definitions and/or highlight differences.

NIH Workshop on Cloud-Based Platforms Interoperability

Thank you for attending!

Please take a moment to complete our Workshop Evaluation Form

See you in the Spring!