

NIH Workshop on Cloud-Based Platforms Interoperability October 30th and November 2nd, 2020

Welcome to the...

NIH Cloud Platforms Interoperability Fall 2020 Workshop

We'll be starting shortly!

NIH Workshop on Cloud-Based Platforms Interoperability October 30th and November 2nd, 2020

Welcome & Introduction to Day 1

Adam Resnick

Children's Hospital of Philadelphia Valerie Cotton

Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH

Introduction & Congratulations!

https://datascience.nih.gov/nih-cloud-platform-interoperability

÷ ≞ ¢

NIH Cloud Platform Interop... 🗵 🗋

NIH Cloud Platform Interoperability Effort

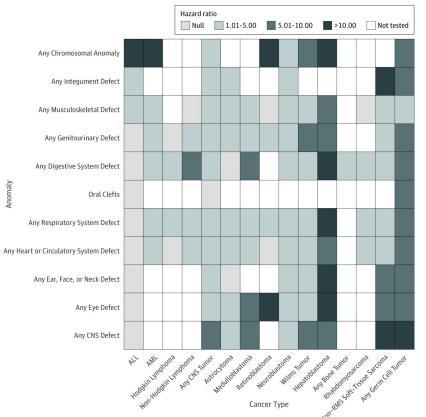
About the NIH Cloud Platform Interoperability (NCPI) Effort

Connecting NIH's various data systems is a critical step toward improving researchers' access to all types of data. The NIH Cloud Platform Interoperability (NCPI) effort @ seeks to create a federated genomic data ecosystem and is a collaborative project between NIH and external partners comprising five working groups @.

When researchers obtain data from a specific platform, there is no guarantee that the data will be readily usable alongside data from a different platform. By focusing on interoperability, the NCPI effort is ensuring that researchers can both find and integrate data more easily from the following four participating platforms:

Search...

Q +


Gabriella Miller Kids First Pediatric Research Program: Interoperability of *childhood cancer & structural birth defects*

Birth defects are associated with increased risk of cancer among children... suggesting shared genetic pathways

From: Association Between Birth Defects and Cancer Risk Among Children and Adolescents in a Population-Based Assessment of 10 Million Live Births

Lupo et al, JAMA Oncol. 2019;5(8):1150-1158. doi:10.1001/jamaoncol.2019.1215

Kids First Sequencing Cohorts 2015-2020

40 projects | 40,000 genomes | 16,000 cases | 14 released datasets

- Disorders of Sex Development
- Congenital Diaphragmatic Hernia
- Ewing Sarcoma
- Structural Heart & Other Defects
- Syndromic Cranial Dysinnervation Disorders
- Cancer Susceptibility
- Adolescent Idiopathic Scoliosis
- Neuroblastomas
- Enchondromatoses
- Orofacial Clefts in Caucasian, Latin American, Asian & African, Filipino populations
- Osteosarcoma
- Familial Leukemia
- Hemangiomas, Vascular Anomalies & Overgrowth
- Craniofacial Microsomia
- Intersection of childhood cancer & birth defects
- Microtia

t. Jude Children

- Kidney and Urinary Tract Defects
- Nonsyndromic Craniosynostosis
- Bladder Exstrophy

HUDSONALPHA

TUTE FOR BIOTECHNOLOGY

- Hearing Loss
- Cornelia de Lange Syndrome
- Intracranial & Extracranial Germ Cell Tumors
- Fetal Alcohol Spectrum Disorders
- Myeloid Malignancies + overlap with Down syndrome
- CHD & ALL in Children with Down Syndrome
- Structural Brain Defects
- Structural Defects of the Neural Tube (Myelomeningocele)
- CHARGE Syndrome
- Laterality Birth Defects
- T-cell Acute Lymphoblastic Leukemia
- Pediatric Rhabdomyosarcoma
- Valvar Pulmonary Stenosis

Use Case: Compare genetic variants of congenital heart defects & neuroblastoma

Explore Data					(IN NEW) (IN OPEN) (IS	SAVE) (B SAVE AS)	
Q Search all filters	Quick Filters	8 Study	* Demographic	Ç. Clinical	Biospecimens	Available Data	t Upload
Combine Queries (and) (or							CL
(#1 Use the filters above to build	d a query					*	12631
Observed Phenotypes 📟		Available Dat	11.000 10.000 9.000		Studies Probards Construite Chapter agreed Construite Chapter agreed Construite Chapter agreed See First Previouslandows		
<u> </u>			2000 1,000 0 0 0 0 0 0 0 0 0 0 0 0	Experimental Strategy	Conservation Chapter age with more performed of Chapter age with the performance of Chapter age of Chapter age with the chapter age the chapter age with the chapter age with the chapter age the chapter age with the chapter age with the chapter age the chapter age with the c	0 500 1.000 # Parts	
Most Frequent Diagnoses (M Probands Cther Participants	fondo)	Gen	der	Ethnicity	Age at Diagnosi	s	
Neuroblastoma Congenital Diaphragmatic Belig Sarcona Wywisi Laukemia				Ily Composition	900 800 700 600 500		

In *Explore Data*, user searches the terms "<u>heart</u>" and "<u>neuroblastoma</u>". Discovers data from children with congenital <u>heart</u> disease (KF & BDC data) & <u>neuroblastoma</u> (KF & NCI TARGET)

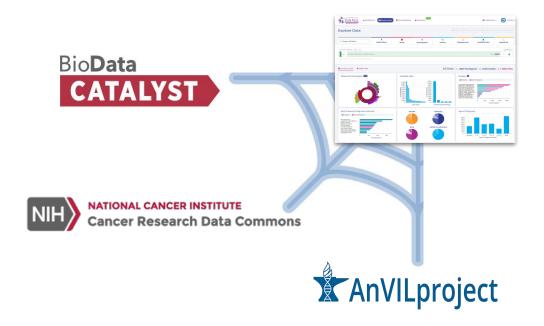
User builds a synthetic cohort based on these criteria and can view summary & deidentified individual-level clinical, demographic, and phenotypic information.

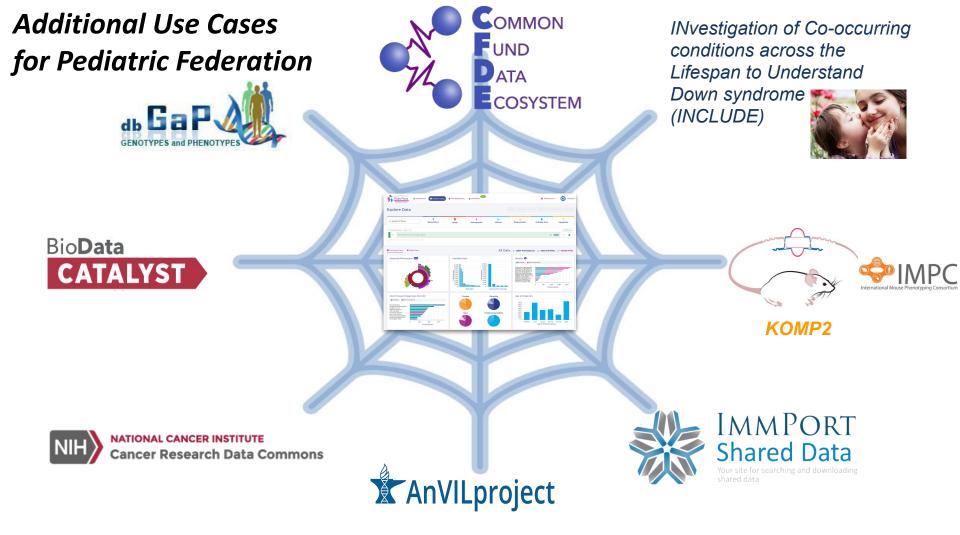
Synthetic cohort is ported to the *File Repository* where user selects which **genomic** and **histology image** files they want to analyze.

Kids First	# Des	hboard	E File Repos	hory								🖩 Kids First 🗸 🙆 Valerie 🗸
Filters	LL FILTERS											» Actions
Q. Enter identifiers			28,81	O Fles	¥L 5,621	articipants.	14	1,625 Families		47 TB Size		
	0105 -	3	howing 1 - 20 of 20,0	10 files				T Fitertable	Columne V	& Export 75	N)	If you have not selected any files, all files in your query will be included
Cinical Elbers Eller	Ribers	0	File ID	Participants ID	Study Name	Proband	Family Id	Data Type	File Format	File Size	±	in the actions.
Study Name	Q	0	GF,NOB3(SHP	P1_624/Pi7	Congenital Diaphra	No	IM, QB85TM8	Aligned Reads	oram	15.53 GB	a 🚊	Data Analysis
	4	0	GF_BT35C7VV	PT_95T516RP	Congenital Diaphra-	No	FM_JADBN593	gVCF	pro-	43.68	4	
Pediatric Brain Tamors Certic	15,019	0	GF, PTHSTF23	P1_2P1852/W	Congenital Diaphra	No	IM,700MEP	svo!	gycr	5.94 GB		C.S.
Crofacial Cleft, European	3.408	10	GF_RHOAQHCS	PLS0Q3M	Congenital Diaphra-	No	PM_BSTD-00/F	EVCF	B(C)	4.91 GB	4	Download
Ancestry Ewing Sarcoma Genetic Risk			GF, TDPA3Q71	P1.82644N0	Congenitel Diaphra	Yes	RM.33MR1VDM	Aligned Roads	bern.	63.33 GB		
 Ewing Sarcoma Genetic Mok Syndromic cranial 	3.246	- 12	GF_W001CSK	PT_RHWOGACA	Congenital Diaphra	Yes	INUITEZIWRI	8107	6407	5.37 GB	4	A MANIFEST
Dysinnervatien	2,097	0	OF_BREMPER	PT_5NV32962	Corgenital Diaphra	No	FM_58FGRN53	Aligned Reads	trem	16.87 68		A HIGAPECINEN
congenital Heart Defects	2.670		GF_CHE13HIN	PT_420HPQAM	Congenital Diaphra	Yes	TALL ISOCTAS	Aligned Reads	berr	63.74 68	4	L CLINICAL
	O1More		OF MOXATON	PT_PV00EDB	Congressil Daphra.	N9	HM_DC2C8K25	Aligned Heads	eram.	20.77.08		
Diagnosis Category	Q	0	GF_010W522X	PT_QQQ3UBPM	Congenital Diaphra	Yes	TMU6520045	Aligned Reads	bam	62.31 GD	4	
G Cancer	15.320	0	OF_DEQNSIGH	PT_28HH8N57	congenital traphya	540	MLTCKEWHEP	Aligned Reads	cram	20.62.08	a 👘	
Coher	10.931	0	GF_FEB15QRD	PT_QQ31MEW3	Congenital Diaphra	No	RM_FVH2R4(2	Aligned Reads	bam	64.62 GB		
Structural Birth Defact	5,479	100	OF ENVERSES	P1.07557CK2	Contental Diastra.	Yes	PM. 405004PW	Aligned Reads	0.900	20,26,08		

 User has or applies for dbGaP access for genomic data User pushes genomic, clinical, and image data into Cavatica for analysis & visualization

hboard Files Apps Tasks	Integrated Kids F	irst/TARGET A	nalysis		Interactive Analysis	Settings	Notes
] Files					In New folder	F Add files	-
P Search	Type: All + Sample ID: All +	Task ID: All 🔻	Tags: All 🔻	+	Clear fitters		
🗆 🔹 ^ Name			Case I	D	Samp	łe ID	
C & TARGET 00e47068-3doo-4b3	d-ba10-8371a1d33cbc.bam		TARGET-30-PA	PVEB	TARGET-30-PAP	VEB-04A	
0 0 ND5-FIRST 0110265-e2e	5-4396-850f-3c70d89a8dbb.cram		PT_T48K7XD1		BS_7TWWV1Y9		
01859cco-d99	3-4935-8bae-d8751b04afe9.cram		PT_J6K6ET0G		BS_DBF8B5M2		
• • • • • • • • • • • • • • • • • • •	e-475b-a451-9/3b5bdf11c3.cram		PT_P5YSY5Z4		BS_CCGFJW3A		
01c87dd9-4a5d-4cd	d-844d-749394deda96.bam		TARGET-30-PA	swij	TARGET-30-PAS	WIJ-01A	
C 2148061 02886996-3468-4ffa	-bada-23b1823416b6.bam		TARGET-30-PA	SWYR	TARGET-30-PAS	WYR-01A	
• • • • • • • • • • • • • • • • • • •	Ib-4c7e-a196-58d302d14d95.cram		PT_8BJ43FRQ		BS_5VJPNAF2		
7 Refresh					Showing	1-100 of 989	<


User runs statistical analyses in notebooks


5 142	N LAW	ty .				
F	2	(E) Summer			S	SevenBridge Data Durscher Editor
		eð bini		nter 2	R	
Jup	yter	Dansk Pjavel	ee Melka	nter 2	R	
		084				
•		5_	E .			

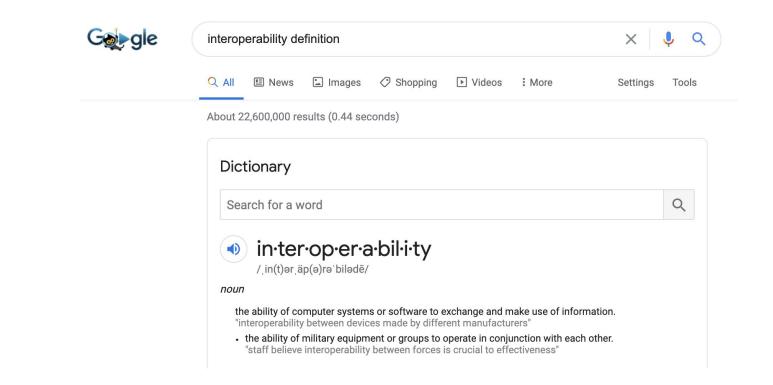
User iterates through genomic workflows

Childhood Cancer & Structural Birth Defects Use Cases:

- Childhood Cancer data from TARGET in the CRDC
- Congenital Heart Disease data from TOPMed/PCGC in BioData Catalyst
- Structural Birth Defects data from the CMGs in AnVIL

Tackling Multiple Layers of Interoperability

Challenge	Working Group	NCPI Activities
Operational barriers to trans-platform data sharing	Community Governance	Establish principles for promoting interoperability across multiple platforms; evaluate operational barriers
Inability to search & access data across platforms	Systems Interoperation	Test & implement technical standards for auth (RAS) & data exchange (e.g. GA4GH DRS) based on key use cases
Transitioning researchers to use the cloud	Outreach & Training	Create public "knowledge base"; create training materials
Lack of standards for clinical data exchange	FHIR	Pilot and assess FHIR resources to model and share complex clinical and phenotypic data


Additional Challenges for Potential NCPI Roadmap

Challenge

Potential NCPI Activities?

Users don't want to use the cloud if Potential new WG to port workflows to the cloud? their favorite tools and workflows are New activity of Systems Interop and/or not there Outreach/Training group? New programs, platforms, and How do we onboard new programs or development databases want to play in the sandbox teams to NCPI? How to estimate cloud costs for Benchmark pipelines? Create public cloud cost researcher analyses guide? FHIR as a flexible structure for clinical data Complex clinical and phenotypic data (that don't map to CDMs/CDEs) interoperability (even if not derived from EHRs)

INTEROPERABILITY

[External] H3F3B G34W variant

Mark Cowley <MCowley@ccia.org.au>

To: O Resnick, Adam C; Cc: Pamela Ajuyah; Paul Ekert; Paulette Barahona; Loretta Lau (External) 👳

→ You forwarded this message on 9/24/20, 6:44 AM.	(Show Forward)
← You replied to this message on 9/24/20, 8:16 AM.	Show Reply
This message is flagged for follow up.	

Dear Adam,

We have a diagnostic dilemma that I hope you could help us with?

The case has been challenging to diagnose by histopathology and also molecularly due to low tumour purity. The patient has a left thalamic/midbrain lesion and it is unclear whether it is a low grade or high grade glioma (which dictates the treatment the patient will receive). She has the canonical BRAF:p.V600E mutation which would be a clear driver in the tumour but of less certainty is a H3F3B G35W variant in the tumour (NM_005324(H3F3B):c.103G>T (p.Gly35Trp) - which if deemed pathogenic would bump up the grade). The MNP classifier failed to classify the tumour (maybe due to low purity), but was confidently MGMT methylated.

Literature supports H3F3A G34W in Giant cell tumours of bone (GCTB), but not in brain tumours. We've never seen H3F3A G34W, but we have seen G34R four times, all reported as pathogenic. All the G34R's had MGMT methylation, an association reported in the literature (28966033, 25752754), and thus pushing us towards saying the variant is pathogenic.

Have you seen this and can make a comment?

Thanks, Mark

Mark Cowley, PhD BSc (Bioinf, Hons 1) Computational Biology Group Leader Conjoint Associate Professor, School of Women's and Children's Health, UNSW Medicine

Children's Cancer Institute Lowy Cancer Research Centre, UNSW Australia PO Box 81 Randwick 2031 Australia P: <u>02 9385 2074</u> | M: <u>0413 481 017</u> | E: <u>MCowley@ccia.org.au</u> | W: <u>www.ccia.org.au</u> | T: @markjcowley

** This email originated from an EXTERNAL sender to CHOP. Proceed with caution when replying, opening attachments, or clicking links. Do not disclose your CHOP credentials, employee information, or protected health

Wednesday, September 23, 2020 at 10:00 PM

Dear Adam,

We have a diagnostic dilemma that I hope you could help us with?

The case has been challenging to diagnose by histopathology and also molecularly due to low tumour purity. The patient has a left thalamic/midbrain lesion and it is unclear whether it is a low grade or high grade glioma (which dictates the treatment the patient will receive). She has the canonical BRAF:p.V600E mutation which would be a clear driver in the tumour but of less certainty is a H3F3B G35W variant in the tumour (NM_005324(H3F3B):c.103G>T (p.Gly35Trp) - which if deemed pathogenic would bump up the grade). The MNP classifier failed to classify the tumour (maybe due to low purity), but was confidently MGMT methylated.

Literature supports H3F3A G34W in Giant cell tumours of bone (GCTB), but not in brain tumours. We've never seen H3F3A G34W, but we have seen G34R four times, all reported as pathogenic. All the G34R's had MGMT methylation, an association reported in the literature (28966033, 25752754), and thus pushing us towards saying the variant is pathogenic.

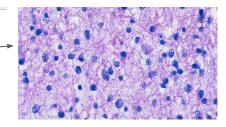
Have you seen this and can make a comment?

Thanks, Mark

Mark Cowley, PhD BSc (Bioinf, Hons 1) Computational Biology Group Leader Conjoint Associate Professor, School of Women's and Children's Health, UNSW Medicine

Dear Adam,

We have a diagnostic dilemma that I hope you could help us with?


The case has been challenging to diagnose by histopathology and also molecularly due to low tumour purity. The patient has a left thalamic/midbrain lesion and it is unclear whether it is a low grade or high grade glioma (which dictates the treatment the patient will receive). She has the canonical BRAF:p.V600E mutation which would be a clear driver in the tumour but of less certainty is a H3F3B G35W variant in the tumour (NM_005324(H3F3B):c.103G>T (p.Gly35Trp) - which if deemed pathogenic would bump up the grade). The MNP classifier failed to classify the tumour (maybe due to low purity), but was confidently MGMT methylated.

Literature supports H3F3A G34W in Giant cell tumours of bone (GCTB), but not in brain tumours. We've never seen H3F3A G34W, but we have seen G34R four times, all reported as pathogenic. All the G34R's had MGMT methylation, an association reported in the literature (28966033, 25752754), and thus pushing us towards saying the variant is pathogenic.

Have you seen this and can make a comment?

Thanks, Mark

Mark Cowley, PhD BSc (Bioinf, Hons 1) Computational Biology Group Leader Conjoint Associate Professor, School of Women's and Children's Health, UNSW Medicine

Dear Adam,

We have a diagnostic dilemma that I hope you could help us with?

The case has been challenging to diagnose by histopathology and also molecularly due to low tumour purity. The patient has a left thalamic/midbrain lesion and it is unclear whether it is a low grade or high grade glioma (which dictates the treatment the patient will receive). She has the canonical BRAF:p.V600E mutation which would be a clear driver in the tumour but of less certainty is a H3F3B G35W variant in the tumour (NM_005324(H3F3B):c.103G>T (p.Gly35Trp) - which if deemed pathogenic would bump up the grade). The MNP classifier failed to classify the tumour (maybe due to low purity), but was confidently MGMT methylated.

Literature supports H3F3A G34W in Giant cell tumours of bone (GCTB), but not in brain tumours. We've never seen H3F3A G34W, but we have seen G34R four times, all reported as pathogenic. All the G34R's had MGMT methylation, an association reported in the literature (28966033, 25752754), and thus pushing us towards saying the variant is pathogenic.

Have you seen this and can make a comment?

Thanks, Mark

Mark Cowley, PhD BSc (Bioinf, Hons 1) Computational Biology Group Leader Conjoint Associate Professor, School of Women's and Children's Health, UNSW Medicine

Tumor site		
H3F3A K27M	81%	
HIST1H3B K27M	N.	
H3F3A G34RV	10%	
TP53 / PPM1D	86%	
ATRX	39%	
PDGFRA	17%	
ACVR1	9%	1 I I IIIIII
PIK3CA / PIK3R1	30%	
Denetic Alteration		Inframe Mutation (putative driver) Inframe Mutation (unknown significance) Musense Mutation (putative driver)
		Missense Mutation (unknown significance) Truncating Mutation (putative driver) Truncating Mutation (unknown significance)
		Amplification Deep Deletion No alterations
		Desir from Distance Combatture Distances of Data

Dear Adam,

We have a diagnostic dilemma that I hope you could help us with?

The case has been challenging to diagnose by histopathology and also molecularly due to low tumour purity. The patient has a left thalamic/midbrain lesion and it is unclear whether it is a low grade or high grade glioma (which dictates the treatment the patient will receive). She has the canonical BRAF:p.V600E mutation which would be a clear driver in the tumour but of less certainty is a H3F3B G35W variant in the tumour (NM_005324(H3F3B):c.103G>T (p.Gly35Trp) - which if deemed pathogenic would bump up the grade). The MNP classifier failed to classify the tumour (maybe due to low purity), but was confidently MGMT methylated.

Literature supports H3F3A G34W in Giant cell tumours of bone (GCTB), but not in brain tumours. We've never seen H3F3A G34W, but we have seen G34R four times, all reported as pathogenic. All the G34R's had MGMT methylation, an association reported in the literature (28966033, 25752754), and thus pushing us towards saying the variant is pathogenic.

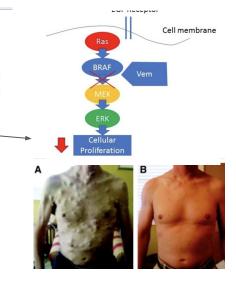
Have you seen this and can make a comment?

Thanks, Mark

Mark Cowley, PhD BSc (Bioinf, Hons 1) Computational Biology Group Leader Conjoint Associate Professor, School of Women's and Children's Health, UNSW Medicine

Dear Adam,

We have a diagnostic dilemma that I hope you could help us with?


The case has been challenging to diagnose by histopathology and also molecularly due to low tumour purity. The patient has a left thalamic/midbrain lesion and it is unclear whether it is a low grade or high grade glioma (which dictates the treatment the patient will receive). She has the canonical BRAF:p.V600E mutation which would be a clear driver in the tumour but of less certainty is a H3F3B G35W variant in the tumour (NM_005324(H3F3B):c.103G>T (p.Gly35Trp) - which if deemed pathogenic would bump up the grade). The MNP classifier failed to classify the tumour (maybe due to low purity), but was confidently MGMT methylated.

Literature supports H3F3A G34W in Giant cell tumours of bone (GCTB), but not in brain tumours. We've never seen H3F3A G34W, but we have seen G34R four times, all reported as pathogenic. All the G34R's had MGMT methylation, an association reported in the literature (28966033, 25752754), and thus pushing us towards saying the variant is pathogenic.

Have you seen this and can make a comment?

Thanks, Mark

Mark Cowley, PhD BSc (Bioinf, Hons 1) Computational Biology Group Leader Conjoint Associate Professor, School of Women's and Children's Health, UNSW Medicine

Dear Adam,

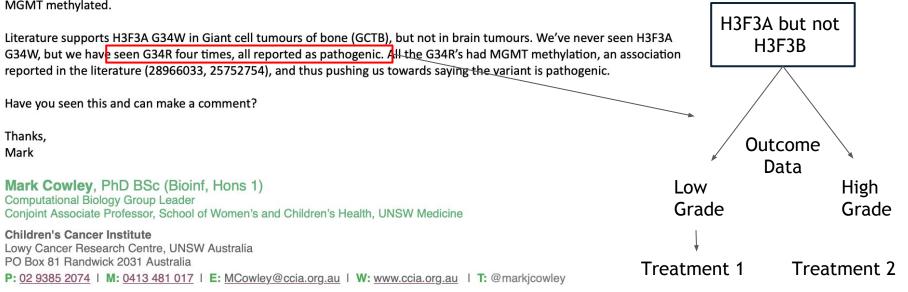
We have a diagnostic dilemma that I hope you could help us with?

The case has been challenging to diagnose by histopathology and also molecularly due to low tumour purity. The patient has a left thalamic/midbrain lesion and it is unclear whether it is a low grade or high grade glioma (which dictates the treatment the patient will receive). She has the canonical BRAF:p.V600E mutation which would be a clear driver in the tumour but of less certainty is a H3F3B G35W variant in the tumour (NM_005324(H3F3B):c.103G>T (p.Gly35Trp) - which if deemed pathogenic would bump up the grade). The MNP classifier failed to classify the tumour (maybe due to low purity), but was confidently MGMT methylated.

Literature supports H3F3A G34W in Giant cell tumours of bone (GCTB) but not in brain tumours. We've never seen H3F3A G34W, but we have seen G34R four times, all reported as pathogenic. All the G34R's had MGMT methylation, an association reported in the literature (28966033, 25752754), and thus pushing us towards saying the variant is pathogenic.

Have you seen this and can make a comment?

Thanks, Mark


Mark Cowley, PhD BSc (Bioinf, Hons 1) Computational Biology Group Leader Conjoint Associate Professor, School of Women's and Children's Health, UNSW Medicine

Dear Adam,

We have a diagnostic dilemma that I hope you could help us with?

The case has been challenging to diagnose by histopathology and also molecularly due to low tumour purity. The patient has a left thalamic/midbrain lesion and it is unclear whether it is a low grade or high grade glioma (which dictates the treatment the patient will receive). She has the canonical BRAF:p.V600E mutation which would be a clear driver in the tumour but of less certainty is a H3F3B G35W variant in the tumour (NM_005324(H3F3B):c.103G>T (p.Gly35Trp) - which if deemed pathogenic would bump up the grade). The MNP classifier failed to classify the tumour (maybe due to low purity), but was confidently MGMT methylated.

Dear Adam,

We have a diagnostic dilemma that I hope you could help us with?

The case has been challenging to diagnose by histopathology and also molecularly due to low tumour purity. The patient has a left thalamic/midbrain lesion and it is unclear whether it is a low grade or high grade glioma (which dictates the treatment the patient will receive). She has the canonical BRAF:p.V600E mutation which would be a clear driver in the tumour but of less certainty is a H3F3B G35W variant in the tumour (NM_005324(H3F3B):c.103G>T (p.Gly35Trp) - which if deemed pathogenic would bump up the grade). The MNP classifier failed to classify the tumour (maybe due to low purity), but was confidently MGMT methylated.

Literature supports H3F3A G34W in Giant cell tumours of bone (GCTB), but not in brain tumours. We've never seen H3F3A G34W, but we have seen G34R four times, all reported as pathogenic. All the G34R's had MGMT methylation, an association reported in the literature (28966033, 25752754), and thus pushing us towards saying the variant is pathogenic.

Have you seen this and can make a comment?

Thanks, Mark

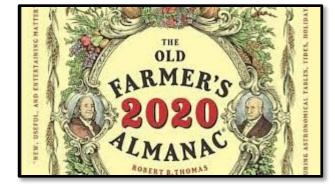
Mark Cowley, PhD BSc (Bioinf, Hons 1) Computational Biology Group Leader Conjoint Associate Professor, School of Women's and Children's Health, UNSW Medicine

Children's Cancer Institute Lowy Cancer Research Centre, UNSW Australia PO Box 81 Randwick 2031 Australia P: 02 9385 2074 | M: 0413 481 017 | E: MCowley@ccia.org.au | W: www.ccia.org.au | T: @markjcowley

Histone H3.3 G34 Mutations Alter Histone H3K36 and H3K27 Methylation In Cis

Leilei Shi ^{1, †}, Jiejun Shi ^{2, †}, Xiaobing Shi ¹, Wei Li ², Hong Wen ^{1, 3} \otimes \boxtimes

Show more 🗸


https://doi.org/10.1016/j.jmb.2018.04.014

Get rights and content

Highlights

 Giant cell tumors of the bone (GCTB) H3.3G34 mutations (G34L/W) only affect histone H3K36 and H3K27 methylation on the same mutated histone tails (*in cis*).

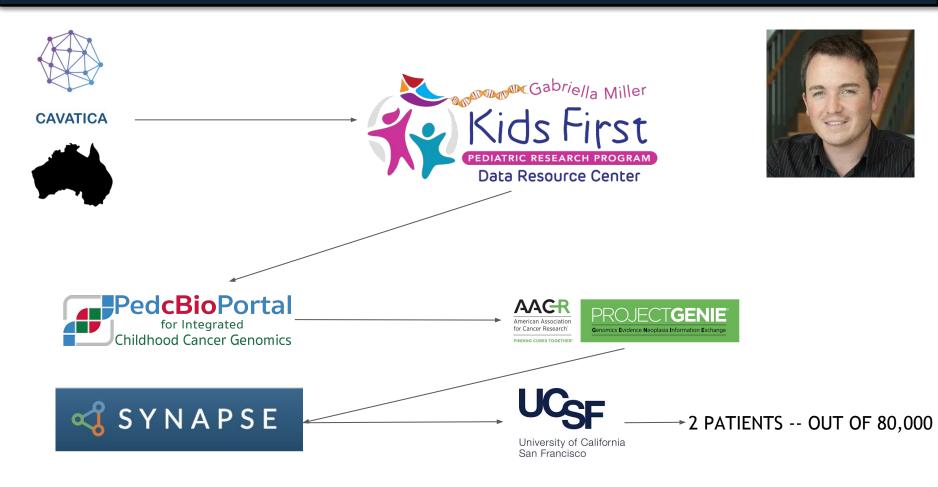
Almanacs versus Weather Forecasts

Tropical Storm Zeta Tuesday October 27, 2020 10 AM CDT Advisory 12 NWS National Hurricane Center Current information: X Center location 21.6 N 89.5 W Maximum sustained wind 65 mph Movement NW at 14 mph S 39-73

Orrecast positions:
 Orropical Cyclone
 O Post/Potential TC
 Sustained winds:
 D < 39 mph
 S 39-73 mph H 74-110 mph M > 110 mph

ALMANACS VERSUS WEATHER FORECASTS

Dow -1.27% 26,321.00 / -338.11			
Most Popular Stocks		>	
Apple Inc	109.54	-4.37%	
Citigroup Inc	41.00	-0.36%	
General Electric Co	7.50	1.76%	
Alphabet Inc	1,627.97	4.68%	
Microsoft Corp	200.96	-1.66%	
	Upda	ted: 10:29:18am ET	
Key Stats		>	
10-year yield	0.84%	+0.01	
Oil	\$35.41	-2.10	
Yen	¥104.58	+0.02	
Euro	\$1.17	-0.00	
Gold	\$1,881.10	+0.70%	


FAIR VERUS IF-AR

IF YOU CAN INTEROPERATE THEN YOU CAN FIND, ACCESS AND EVENTUALLY REPRODUCE

WHAT AND HOW vs WHERE WHEN

KNOWLEDBASES VERSUS A COMMONS

How will we know when we succeed?

WHEN USERS TALK ABOUT FAR OUT DATA

MORNING SESSION KEY MESSAGES

- 1. Awesome, impactful, accelerated science can *actually* happen by harnessing the multi-platform cloud setting!
- 2. Both "expert" users and "new" users are able to leverage the advantages of cloud platforms when supported.
- 3. Users still face "binaries" in decision making that limit their full potential for harnessing platforms/cloud:
 - a. Costs/platforms→ On Prem vs. Cloud (and which cloud?), where and from whom do I have my credits, how do I support "other" data (see b.) -- help with cost optimization.
 - b. Terra vs. SBG vs. ISB vs. "X" \rightarrow
 - i. What data do I have to move where since I not only am accessing multiply hosted datasets, but have some of my own data, own cohorts, or other existing studies that I need to intersect with the cloud-based cohorts (relates to the multiple cohort creation processes users will engage when navigating interop).
 - c. CWL vs. WDL \rightarrow where should I either invest in transforming my pipelines or are the "right" combinations of multiple pipelines available? Is there a way not to be "locked in" by this?

NIH Workshop on Cloud-Based Platforms Interoperability October 30th and November 2nd, 2020

Experience Analyzing Human Genomes on the Cloud

Harrison Brand

Assistant Professor in Neurology MGH, Harvard Medical School, & Broad Institute

INTRODUCTION

PhD in Human Genetics from the University of Pittsburgh

(Advisors: Drs. Eleanor Feingold and Brenda Diergaarde)

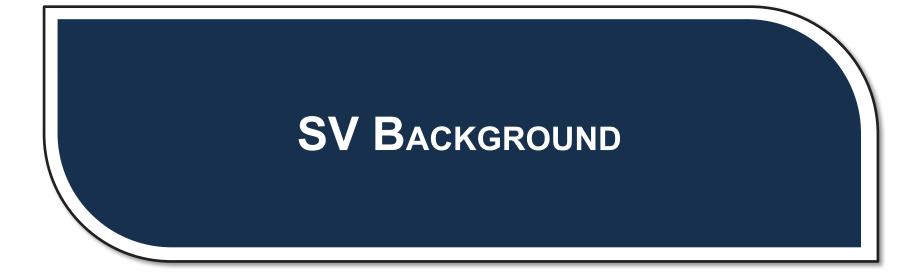
Focus in Statistical Genetics

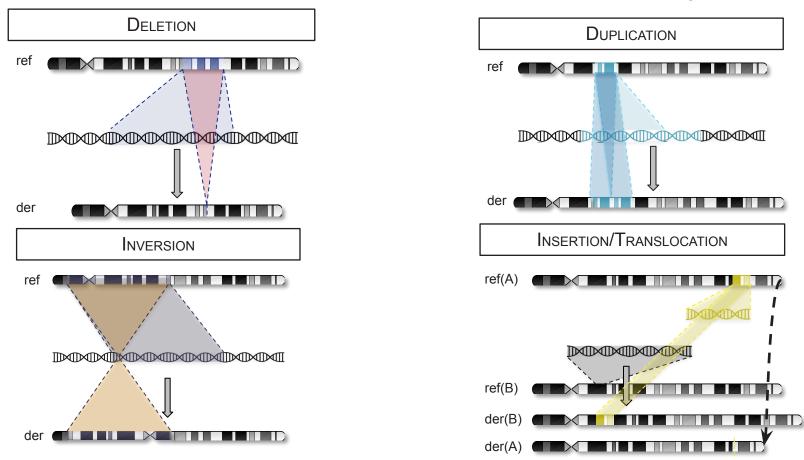
Postdoc at Center for Genomic Medicine at MGH, Harvard Medical School, and Broad Institute (Advisor: Dr. Michael Talkowski)

 Applied novel WGS techniques to better detect structural variation (SV) in the human genome

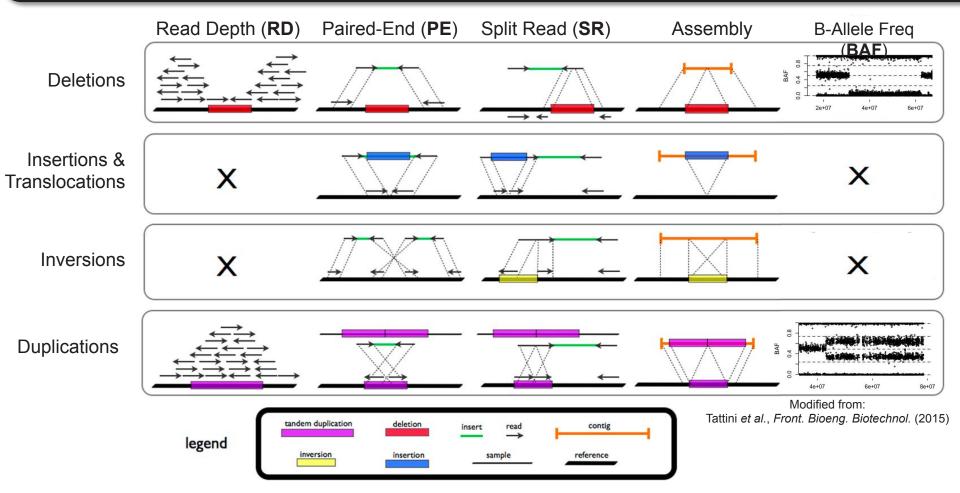
Assistant Professor in the Department of Neurology at MGH, Harvard Medical School

- Assessing the impact of SV across a wide range of complex disorders
- Leading pipeline development and disease association studies in the Broad SV group



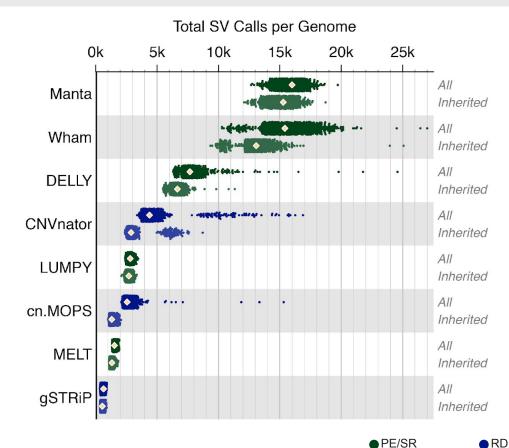

EXPERIENCE WITH RELEVANT PLATFORMS

- <u>NHLBI Biodata Catalyst</u> Fellow working on SV in Type 2 Diabetes and Glycemic Traits
- <u>NHRGI's Analysis</u>, <u>Visualization</u>, and <u>Informatics Lab-space</u> (AnVIL)
 Member of the Broad CCDG and CMG teams
- <u>Kids First Data Resource Center</u> (KFDRC) Member of the Broad GMFK Sequencing & Analysis Team. Part of several GMKF disease specific working groups
- <u>Simons Simplex Collection</u> Member of Autism Sequencing Consortia
- <u>The Genome Aggregation Database (gnomAD)</u> SV group

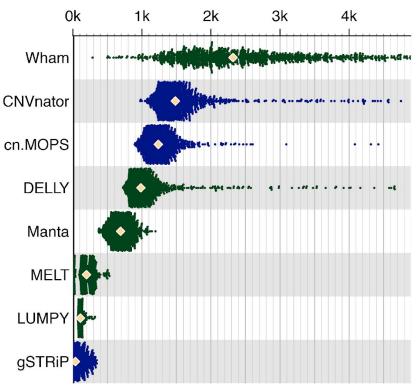


STRUCTURAL VARIATION

Four basic classes of structural variation (SV) in the human genome

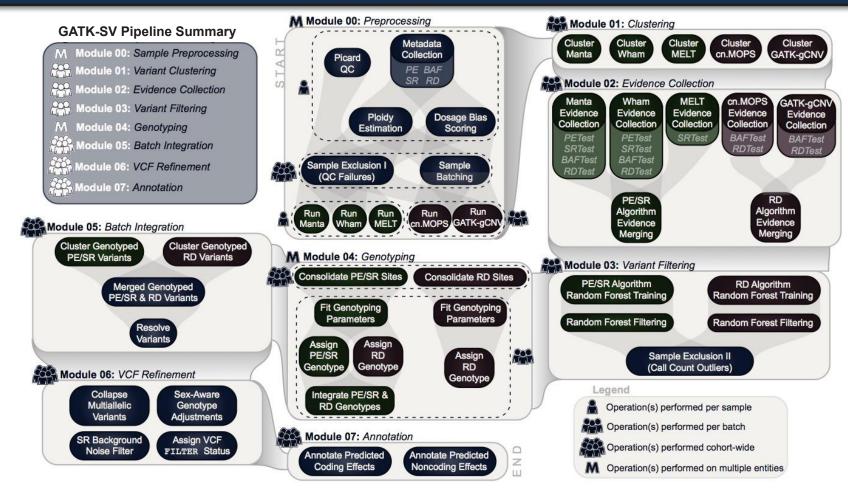


SV DISCOVERY IN WHOLE GENOME SEQUENCING

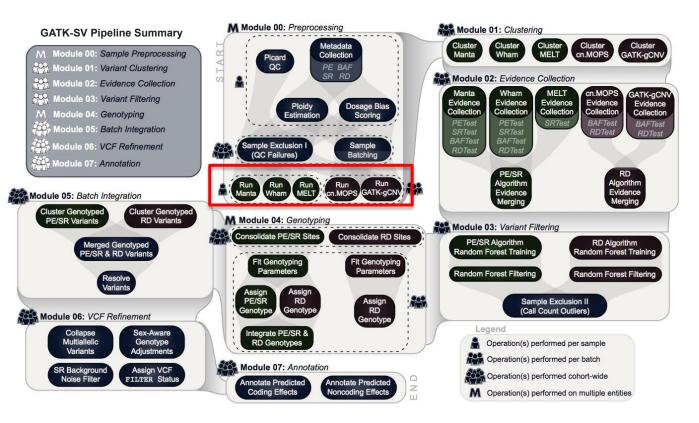


MANY SV ALGORITHMS, BUT NO SILVER BULLET

Raw algorithms yield >200-fold more *de novo* SV than expected (~0.2/genome)

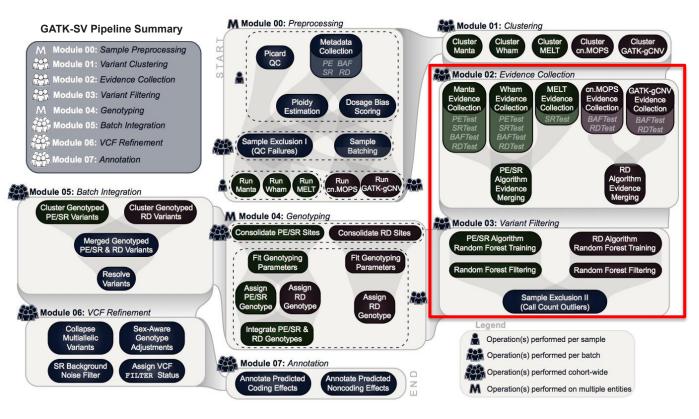


De Novo SV Calls per Genome



♦ Median per genome

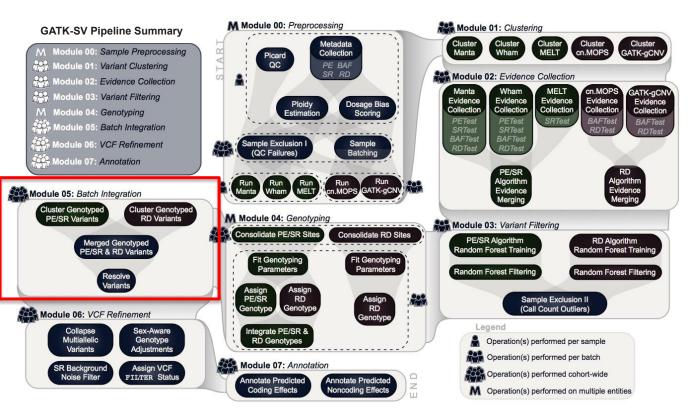
GATK-SV: CLOUD ENABLED SV PIPELINE



GATK-SV: CLOUD ENABLED SV PIPELINE

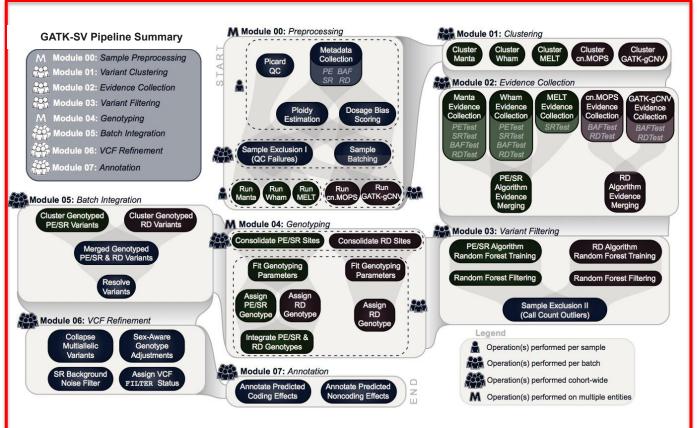
- Run several unfiltered algorithms to <u>maximize</u> <u>sensitivity</u>
- Re-evaluate evidence directly from BAMs to improve specificity
- Captures both unbalanced (CNV) and balanced (inversion, translocation) SV
- Integrates SV signatures to resolve complex events
- Modular design provides flexibility for improvements

GATK-SV: CLOUD ENABLED SV PIPELINE


 Run several unfiltered algorithms to maximize sensitivity

Re-evaluate evidence directly from BAMs to <u>improve specificity</u>

 Captures both unbalanced (CNV) and balanced (inversion, translocation) SV

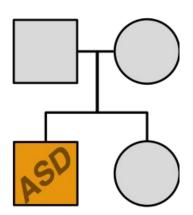

- Integrates SV signatures to resolve complex events
- Modular design provides
 flexibility for improvements

GATK-SV: CLOUD ENABLED SV PIPELINE

- Run several unfiltered algorithms to maximize sensitivity
- Re-evaluate evidence directly from BAMs to improve specificity
- Captures both unbalanced (CNV) and balanced (inversion, translocation) SV
- Integrates SV signatures to resolve complex events
- Modular design provides
 flexibility for improvements

GATK-SV: CLOUD ENABLED SV PIPELINE

- Run several unfiltered algorithms to maximize sensitivity
- Re-evaluate evidence directly from BAMs to improve specificity
- Captures both unbalanced (CNV) and balanced (inversion, translocation) SV
- Integrates SV signatures to resolve complex events
- Modular design provides flexibility for improvements

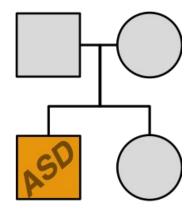

EXPERIENCE IN THE CLOUD

https://innovationatwork.ieee.org

First Experience

- Pilot study involving 40 Autism Spectrum Disorder (ASD) families (n = 160) from SFARI
- Data hosted on AWS
- Pulled down BAMs to local computing cluster ~16 TB
- Ran SV detection locally
- Quickly realized the challenge of handling WGS on local computing cluster

HAR


M RESEARCH INITIA

SIMONS FOUNDATION

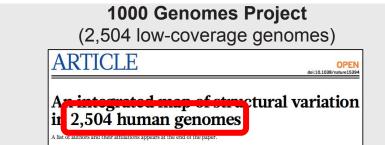
Hybrid Approach

- Phase 1 increased to 519 families (n = 2,076) from SFARI
- Raw algorithms run on AWS
- Lots of issues with cloud stability
- Pulled down raw SV VCFs to local computing cluster
- Ran SV pipeline on local compute cluster

THE VALUE OF POPULATION VARIATION REFERENCES

Variant Class

SNVs

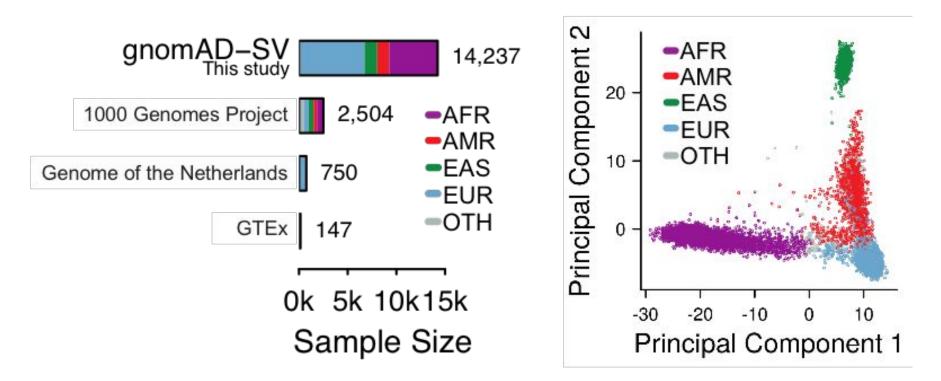

InDels


Current Gold-Standard Reference

ExAC (60,706 exomes) ARTICLE Analysis of protoin, coding genetic variation in 60,706 humans gnomAD (125,748 exomes + 15,708 genomes) New Results Variation acros 141,456 human exomes and genomes eveals the spectrum of loss or nunction movement across names protein-coding genes

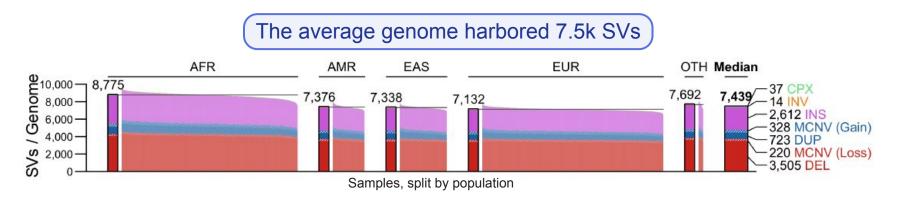
Advances Catalyzed

- Improved understanding of human demography
- Mutational constraint
- Refined clinical interpretation
- Power for disease association
- Frequency filter for rare diseases
- Human "knockout" identification



SVs

GNOMAD-SV DATASET


Illumina WGS on 14,891 samples (14,237 passed quality control). Majority (54%) non-European.

Collins*, Brand* et al., Nature 2020

Shift to Cloud

- Large sample in gnomAD necessitated compete shift to cloud
- Set up pipeline on google cloud (GCP) using firecloud/terra platform from the Broad Institute
- Processed and ran QC on all 15,000 samples

WHAT I HAVE LEARNED USING THE CLOUD FOR GENOMICS

My Experience - Benefits of the Cloud

- Data sharing
- Ability to massively parallelize due to incredible resources
- Reproducibility of code for groups outside one's home institution
- Technical Support

What Terrifies Me?

- Financial issues
 - □ Cost tracking lag (24 hours)
 - Intermediate data file storage
 - □ Infrastructure changes that break code
 - □ Surprise preemptible VM bills
- Scalability issues
 - Making sure to run parallel jobs to optimize both time and cost
 - Cost monitoring

Challenges of Interoperability

GATK-SV has only been adapted for the Terra system on GCP

- Can't directly access data on AWS without pulling to google cloud
- If adapted for AWS do I need to support two provide support for both AWS and GCP
- Resource optimization likely to differ between AWS and GCP

Conclusions

- I have helped build a cloud-based SV pipeline that has been applied on tens of thousands of samples
- These studies would not have been possible on a standard high-performance computing cluster
- The cloud holds great promise for sharing data and reduces
 barriers for reproducibility
- Cost tracking is still a little terrifying

Acknowledgements

Michael Talkowski

Talkowski Lab Xuefang Zhao Harold Wang Chelsea Lowther Jack Fu Isaac Wong Elise Valkanas Isaac Wong Matt Stone

Ryan Collins

Daniel MacArthur

gnomAD Jessica Alföldi Konrad Karczewski Laurent Francioli Mark Daly Nick Watts Matt Solomonson Anne O'Donnell

The Broad Institute

Broad-SV Team Eric Banks Laura Gauthier **Chris Whelan** Mark Walker Ted Brookings Emma Pierce-Hoffman Ted Sharpe Steve Huang Samuel Lee Androv Smirnov

NIH Workshop on Cloud-Based Platforms Interoperability October 30th and November 2nd, 2020

Proof of concept of interoperable approaches for improving outcomes of pediatric diseases.

Alisa Manning

Assistant Investigator, Massachusetts General Hospital Instructor, Harvard Medical School

Tim Majarian

Computational Biologist, Broad Institute

Background: Using the Cloud for Complex Trait Genetics Analysis

2017 - 2018: First researchers to perform a GWAS using FireCloud 2018 - 2019: Collaborative Development of Cloud-based Workflows 2020: Collaborative analysis in NHLBI's BioData Catalyst

TOPMed Diabetes working group

- Genome-wide association studies
- Rare variant association tests
- Writing our first WDLs
- Deploying our first cloud-based workflows

TOPMed Cloud Computing Pilots

• FireCloud

Rare variant analysis workflows:

- Collaboration on github
- Analysis Commons hosted by DNANexus
- TOPMed Diabetes working group analysis on Terra

Large-scale Gene-environment Interaction

- Principle Investigator (MGH)
- Open-source statistical software tools
- WDL workflows
- WDLs in DockStore

User resources: GWAS in the cloud

- Featured Workspace in Terra
- Workshop at ASHG 2019

Biodata Catalyst

• Principle Investigator (Broad Institute)

Biodata Catalyst - Fellows Cohort 1

 Postdoc with Gene-environment Interaction study including TOPMed WGS and 'Omics Data

CICI Interoperability Project

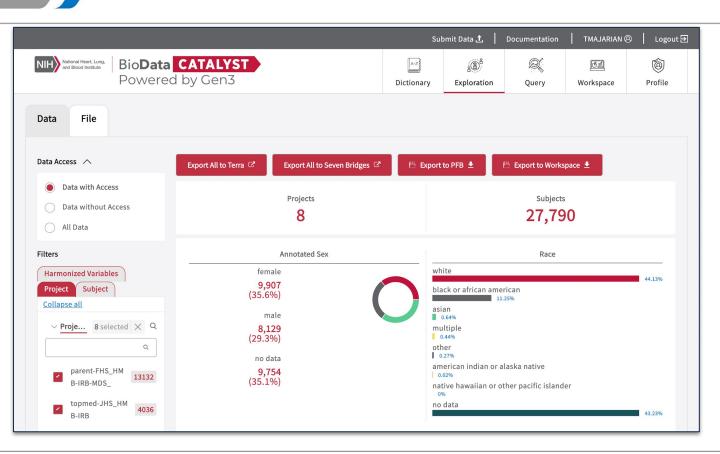
• Pilot process for cross-platform analysis

Genetics of CHD: improving outcomes of pediatric diseases

Study aims:

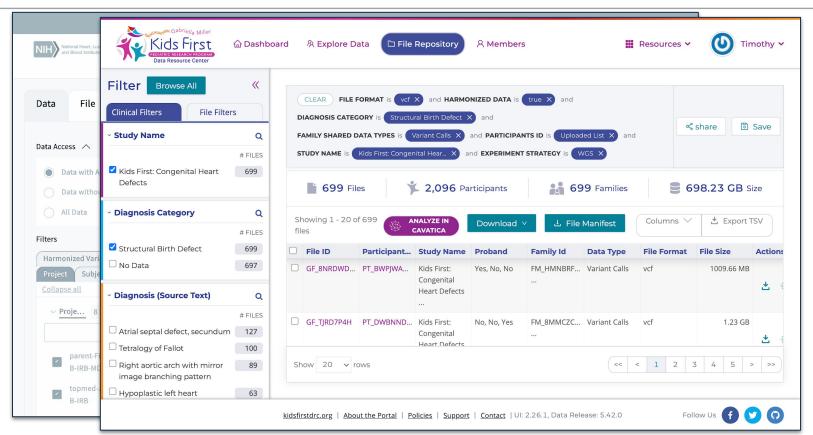
- 1. Identify, access, and summarize available genetic and phenotypic data on native cloud platforms
- 2. Leverage individual-level data from multiple cloud platforms to assess rare variants contributing to CHD risk

Framework:

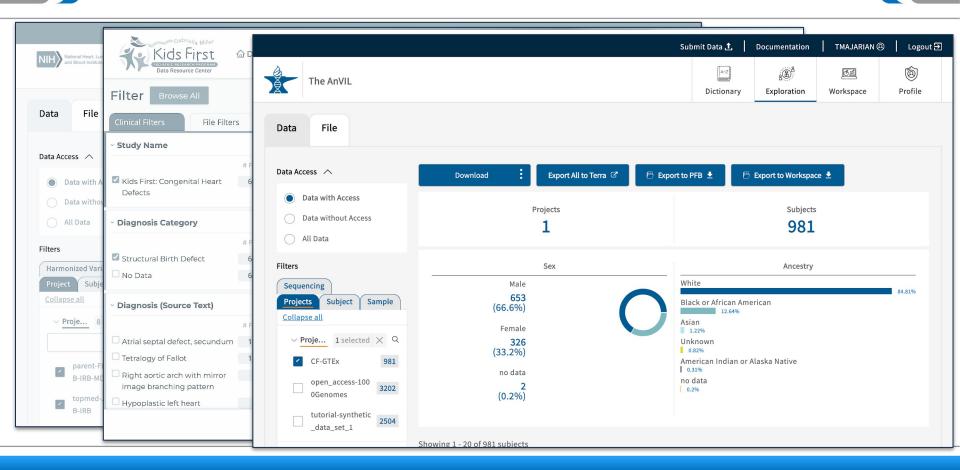

Internal cases (KFDR CHD) External controls (FHS/JHS) Gene expression follow-up (GTEx)

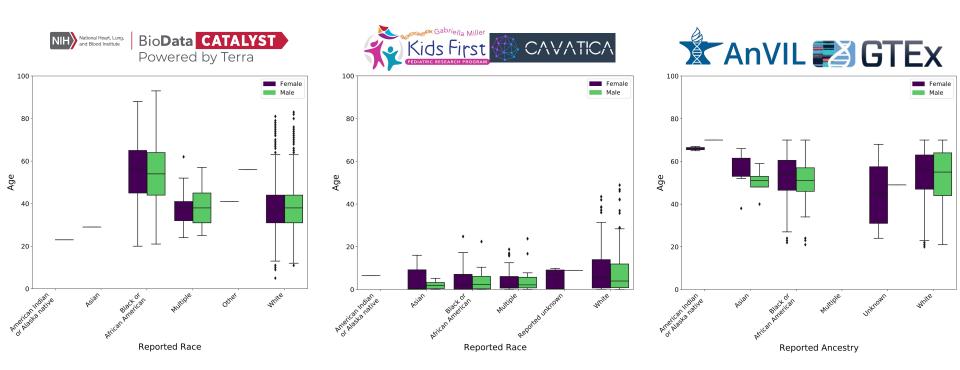
Method: Proxy External Controls Association Test (ProxECAT)

Compare ratio of rare, synonymous and nonsynonymous variants per gene between cases and controls


Platform	Datasets	dbGaP	Sample	Use
AnVIL	GTEx	phs000424.v8.p2	980	Not used
Kids First	PCGC	phs001138.v3.p2	699	Case
BioData Catalyst	TOPMed PCGC	phs001735, phs001194.v2.p2	1,901	Not used
	FHS	phs000974.v4.p3, phs000007.v30.p11	4,155	Control
	JHS	phs000964.v4.p1	2,777	Control

Export to native cloud platforms




Export to native cloud platforms

Platform-specific summaries

All preparation steps were performed within separate ecosystems

- 1. KFDR Cavatica
- 2. BioData Catalyst Terra
- 3. AnVIL Terra

Variants included in analysis:

- MAF < 1%
- Protein coding exonic

Variant annotation - Synonymous and non-synonymous

- ANN field in VCF files for KFDR
- DBSNFP for JHS and FHS

For each protein coding gene

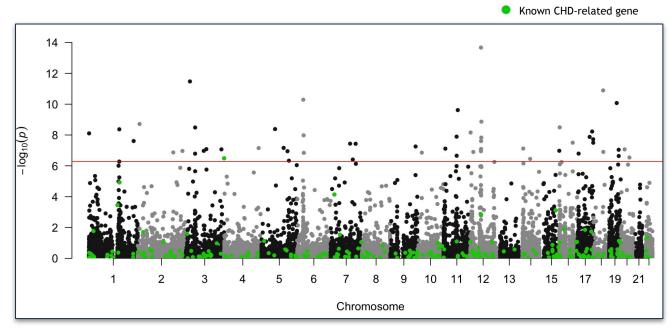
- Count synonymous and non-synonymous variants
- Separated by cases (KFDR) and controls (JHS and FHS)

ANN: annotation field

 Predicted variant effect on gene expression or protein function

DBSNFP:

- Database of functional predictions for all coding variants
- Includes same variant effect predictions as ANN field


ProxECAT results

Association analyses were performed within the BioData Catalyst ecosystem

KFDR data was manually downloaded and uploaded to a BDC workspace

- 17,285 genes tested
- 55 genes with P<5e-7
- 1 known CHD gene with P<5e-7

Then vs Now vs Future

Pre-interoperability effort

Current paradigms

Future

Data authorization

- Obtain dbGaP access
- Log into dbGaP
- Create download request

Access and localization to cloud platform

- Start GCS VM
- Download data via Aspera
- Upload data to GCS bucket
- Access through Terra workspace

Data preprocessing & Final analysis

• Single Terra workspace

Data authorization

Obtain dbGaP access

Access and localization to cloud platform

- ERA credentials through Gen3 or KFDR
- Export data links (DRS) within a individual ecosystems

Data preprocessing

• Separate workspaces within individual ecosystems

Final analysis

- Single BDC workspace
- Download & upload KFDR data for analysis

Data authorization

• Obtain dbGaP access

Access and localization to cloud platform

• Single sign in within a BDC ecosystem

Data preprocessing

• One BDC workspace for all data

Final analysis

- One BDC workspace
- No download and upload

Stumbles and roadblocks

Data availability across platforms - KFDR (Cavatica) to BDC (Terra)

PFB import to Terra - TOPMed PCGC (BDC) [SOLVED]

DRS links - GTEx (AnVIL) [SOLVED]

Workflow compatibility - CWL (Cavatica) vs. WDL (Terra)

Data documentation: Data are easy to access but finding exactly how the data were generated remains difficult

Ex: Why is the ANN field missing in the TOPMed cohort-level VCFs? Ex: What fields are included in genetics data and what do they mean? Ex: What methods were used for genotype calling? (KFDR vs. TOPMed)

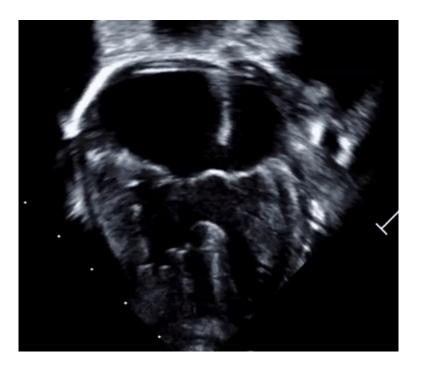
Acknowledgements

Brian O'Connor Asia Mieczkowska Becky Boyles Patrick Patton Steven Cox Michael Baumann Andrew Rula Alex Baumann Allison Heath David Higgins Maia Nguyen

Gabriella Miller Kids First Pediatric Research Program of the Pediatric Cardiac Genetics Consortium (PCGC) Pediatric Cardiac Genomics Consortium (PCGC) Genotype-Tissue Expression (GTEx) project TOPMed's PCGC's Congenital Heart Disease Biobank Framingham Heart Study Jackson Heart Study

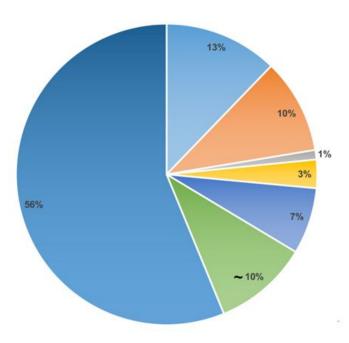
NIH Workshop on Cloud-Based Platforms Interoperability October 30th and November 2nd, 2020

Use of cloud computing to study structural variation in congenital heart disease


Daniel Quiat M.D., Ph.D

Attending in Cardiology - Boston Children's Hospital Postdoctoral Fellow - Seidman Lab - Harvard Medical School

Congenital Heart Disease


- Congenital Heart Disease (CHD)
 - Most common congenital anomaly
 - 7-8/1000 live births
 - Leading cause of mortality due to a birth defect
 - Strong genetic basis
 - Association with genetic syndromes and chromosomal abnormalities

Genetics of CHD

- aneuploidy (Hartman et el, Pediatric Cardiology 2011)
- CNV (Kim et al, J Thorac Cardiovasc Surg, 2016; Glessner et al, Circ Res, 2014)
- known gene inherited
- de-novo chromatin SNV (Zaidi et al, Nature, 2013)
- other de-novo SNV (Zaidi et al, Nature, 2013; Homsy et al, Science, 2015; Hitz et al, Nat Gen, 2016)
- environmental (Jenkins et al, Circ, 2007)
- unknown

Can we use WGS to identify previously undetected genetic variants responsible for CHD?

Pediatric Cardiac Genomics Consortium

Genomic structural variants as a class of undetected variation

Sequence variation

Structural variation

Single nucleotide
 Base change – substitution – point mutation
 → Insertion-deletions ("indels")

SNPs – tagSNPs

2 bp to 1,000 bp

- Microsatellites, minisatellites
- \rightarrow Indels
- Inversions
- Di-, tri-, tetranucleotide repeats
- VNTRs

1 kb to submicroscopic

- → Copy number variants (CNVs)
- \rightarrow Segmental duplications
- Inversions, translocations
- → CNV regions (CNVRs)
- Microdeletions, microduplications

Microscopic to subchromosomal

- → Segmental aneusomy
- Chromosomal deletions losses
- Chromosomal insertions gains
 Chromosomal inversions
- Intrachromosomal translocations
- Chromosomal abnormality
- \rightarrow Heteromorphisms
- Fragile sites

Whole chromosomal to whole genome

- Interchromosomal translocations
- Ring chromosomes, isochromosomes
- Marker chromosomes
- \rightarrow Aneuploidy
- \rightarrow Aneusomy

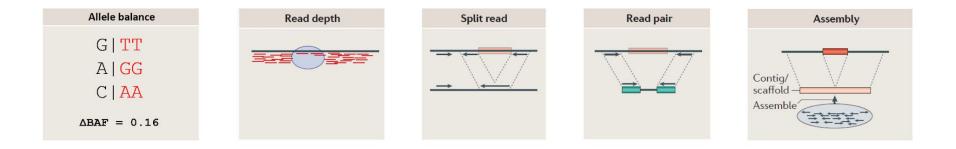
Molecular

genetic detection

Cytogenetic

detection

Structural variant (SV) – Any genetic change > 50 bp in


size that alters the structure of the genome

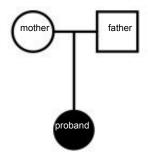
- Unbalanced: duplications, deletions, insertions
- Balanced: translocations, inversions

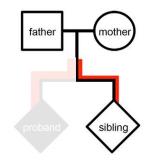
Scherer et al. Nature Genetics - Supplement 2007

Detection of genomic SVs by WGS is resource intensive

- Utilize multiple tools to collect a variety of evidence genome-wide
- Resource requirements pushed our group to consider computing in the cloud

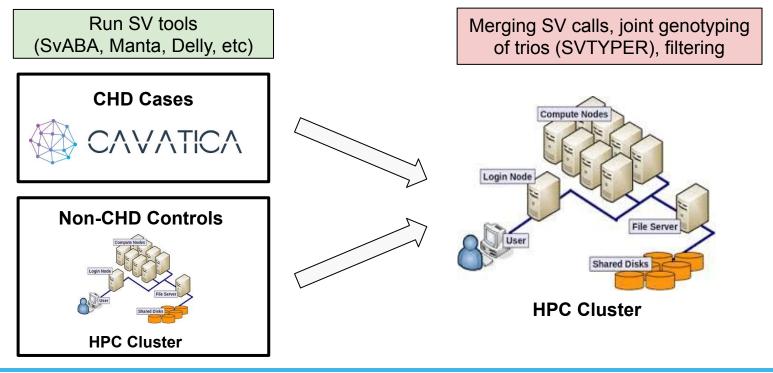
Important factors that eased transition to the cloud


- Concerns about unknowns surrounding cost of analyses vs no additional cost associated with computing on HPC cluster
 - **\$\$\$** available for pilot studies
- Learning curve
 - <u>User-friendly tool editors on Cavatica and help from Seven</u>
 <u>Bridges bioinformatics team when necessary</u>
- Data availability
 - o GMKF generated WGS data on Cavatica



Experimental Approach

Cases


• 716 CHD trios • 716 CHD trios Gabrie//a Miller Kids First PEDIATRIC RESEARCH PROGRAM • 1650 non-CHD 'trios'

SFAR SIMONS FOUNDATION AUTISM RESEARCH INITIATIVE

Experimental Approach

Initial Study Results

- SV genotyping identifies pathogenic loss-of-function SVs in known CHD genes, and a burden of *de novo* loss-of-function variants in constrained genes
 - Example: Patients with tetralogy of Fallot harbor rare loss-of-function variants in genes associated with the diagnosis ranging from 57bp to 8kb in size
 - TBX1, KDR, FLT1, NOTCH1

Expansion of CHD WGS dataset and population level SV genotype data

• 892 trios sequenced by GMKF

• 1067 trios sequenced by TOPMED

• Population level SV data from gnomAD-SV

Current Approach

• Genotype SVs in 1950+ CHD trios using GATK-SV in collaboration with Drs. Brand and Talkowski (ongoing)

GMKF WGS data manually uploaded to Terra platform for this analysis

Importance of Interoperability

- PCGC Cohort split between two platforms
 - A problem for major analyses and minor tasks
- In addition to CHD, we are applying GATK-SV workflow in Terra to other cardiovascular and developmental datasets: TOPMED (cardiomyopathy) and GMKF (microtia)
- As our lab is starting to perform additional analyses in the cloud and location of workflows and datasets is a major considerations as we make this transition

Positive experiences computing in cloud ecosystems

- Acceleration of research through use of 'on demand' cloud compute resources
- Ease of data sharing
 - Access to more control WGS data \cap

Barriers encountered while computing in cloud ecosystems

- Datasets of interest split between two platforms
- Difficulty estimating cost upfront / difficulty monitoring cost
- Expensive mistakes / backend errors
- WDL vs CWL, and lack of workflow portability

Acknowledgements

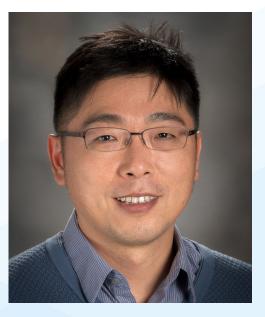
Seidman Lab Kricket and Jon Seidman Sarah Morton Steve DePalma Jon Willcox Alex Pereira Josh Gorham Alireza Haghighi Barbara McDonough

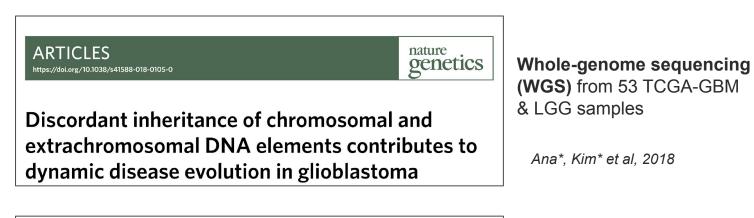
<u>BCH</u>

Jane Newburger Amy Roberts

Talkowski & Brand Labs

<u>GATK-SV team</u> Mark Walker




NIH Workshop on Cloud-Based Platforms Interoperability October 30th and November 2nd, 2020

Studies on extrachromosomal DNA alterations using cloud computing over multiple tumor types

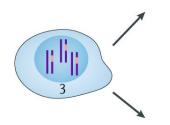
Hoon Kim Senior Research Scientist Jackson Laboratory

Our two studies made possible through the Cancer Genomics Cloud of the Institute for Systems Biology (ISB-CGC) and Amazon Web Service (AWS)

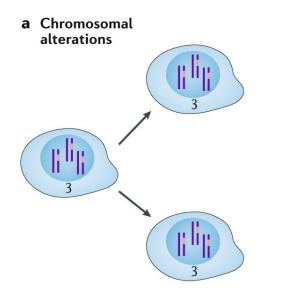
Whole-genome sequencing from >5000 samples (tumor & normal)

Kim et al, 2020

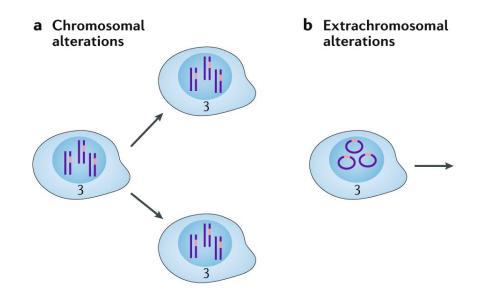
Extrachromosomal DNA (ecDNA) elements in cancer were first described in 1965

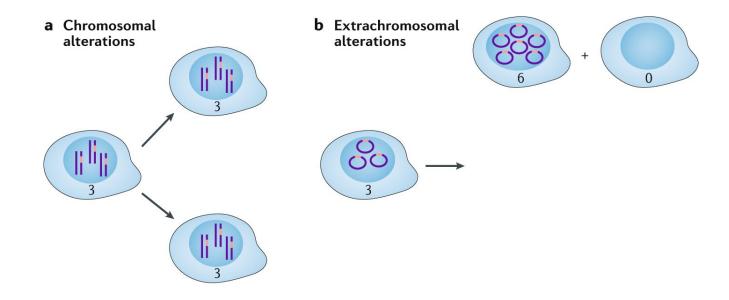

- Circular DNA
- Also referred to as "minute bodies" or "double minutes"
- Previously, it was reported to be in only 1.4% of tumors (Mitelman, 2007)

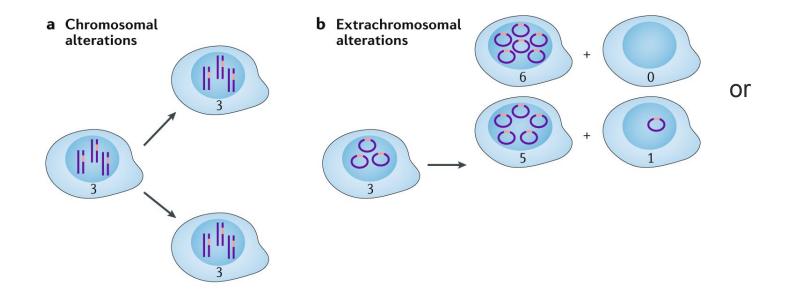
Metaphase chromosome spreads

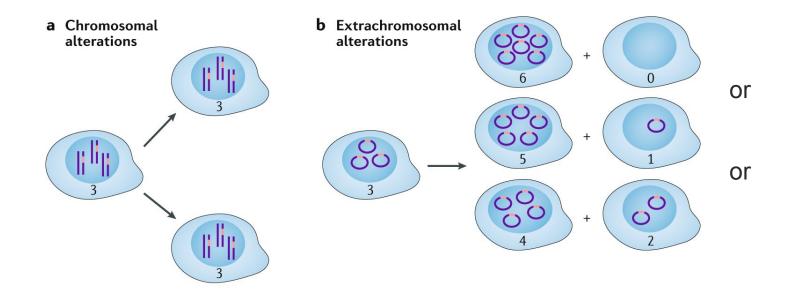

from neuroblastoma cell

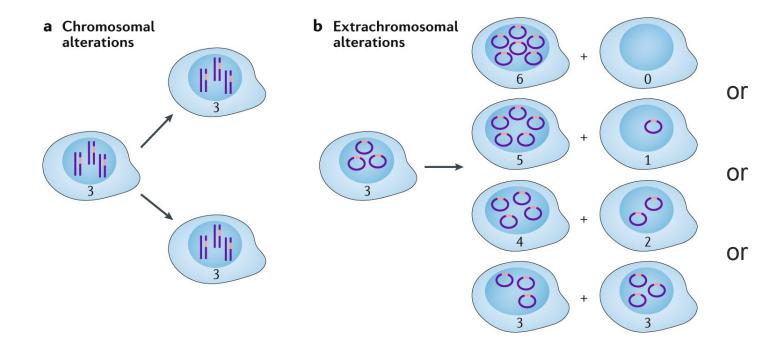
Uneven segregation of ecDNAs during cell division

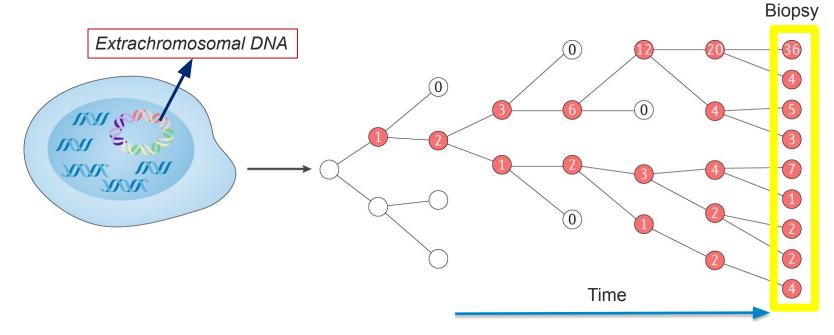

a Chromosomal alterations


Chromosomal alterations are equally segregated during cell division

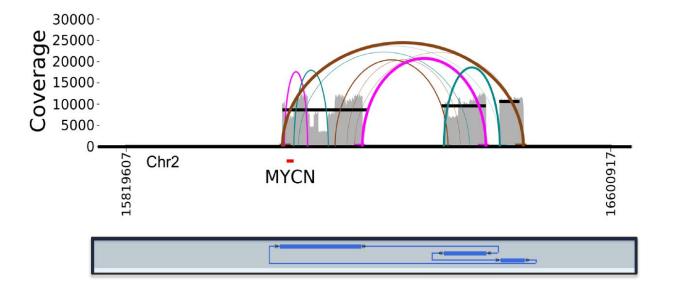

The segregation patterns of ecDNAs during cell division are different from chromosomal DNA.

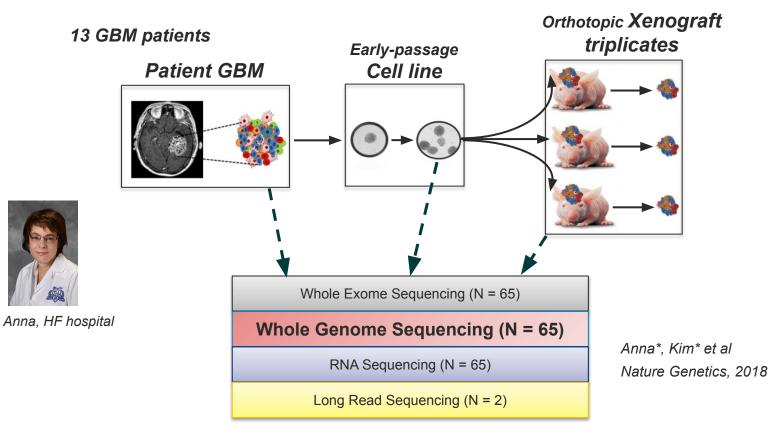

Cont'd


Cont'd

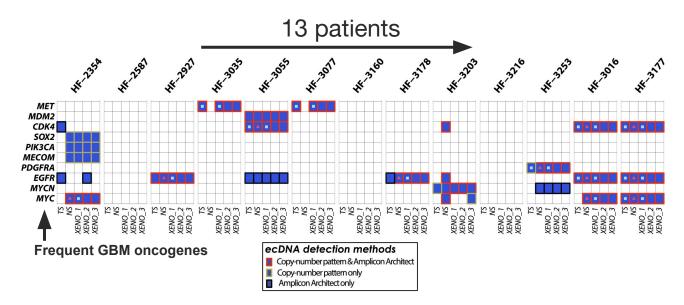

Cont'd

Uneven and random segregation of ecDNA during cell division

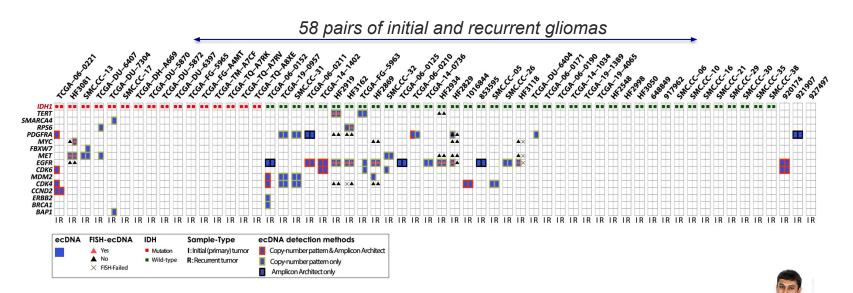

Extrachromosomal oncogenic DNA elements rapidly accumulate, driving tumor heterogeneity.


Rapid ecDNA-driven tumor heterogeneity associated with uneven ecDNA segregation.

Verhaak et al, Nat Rev Cancer, 2019


We can computationally predict ecDNA from whole-genome sequencing

Study I - Modeling GBM evolution *in vitro and in vivo*



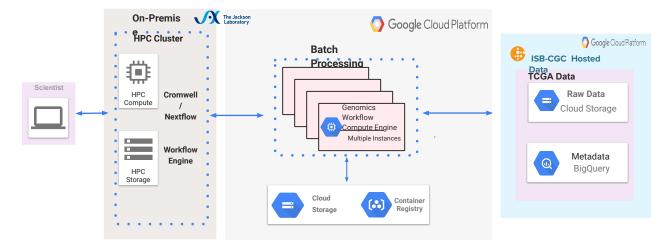
All oncogenic amplifications were ecDNAs in our data.

- We reconstructed one or more ecDNAs in most of the glioblastoma samples.
- EcDNAs are highly frequent in glioblastoma.
- The previous ecDNA incidence rate (1.4%) may be wrong.

Analyze 58 pairs of initial and recurrent gliomas to detect ecDNAs

- 27 pairs of gliomas from TCGA were analyzed through ISB-CGC
- 38 patients were predicted to contain at least one ecDNA.
- ~70% of the ecDNA driver genes were preserved.
- High level CNV amplifications that disappeared at relapse were most likely to be ecDNAs.

Sandeep Namburi


Study II - Pan-cancer survey of ecDNAs

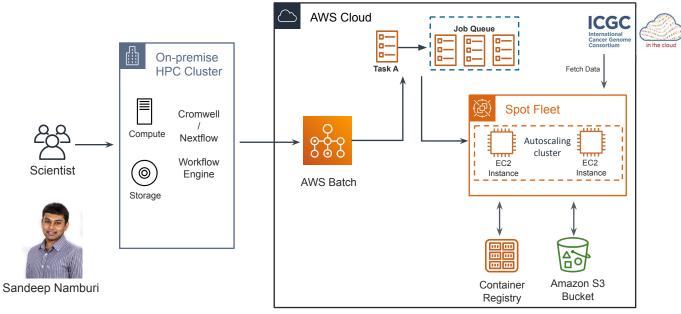
	Lineage	Tumor	Normal	Total
	Prostate	301	116	417
	Liver	252	52	304
R	Pancreatic	213		213
	Renal	198	129	327
	Pediatric Brain	188		188
	Skin	164	137	301
	Breast	159	111	270
	Head and Neck	153	137	290
Genomics Cloud	Gastric	145	124	269
	Lung Adeno	143	145	288
INHGRI	Uterine Corpus Endometrial	143	137	280
	Thyroid papillary	136	130	266
	Bladder	112	95	207
	Esophageal	112	60	172
ſ	Lymphoid leukemia	95		95
	Lower Grade Glioma	85	89	174
	B-cell lymphoma	83	7	90
	Colorectal	74	70	144
PCAWG	Ovarian	70	45	115
PanCancer Analysis	Cervical	66	64	130
WHOLE GENOMES	Lung Squamous cell	50	49	99
	Uveal melanoma	50	51	101
	Myeloid leukemia	48	39	87
	Glioblastoma	47	45	92
	Ewing Sarcoma	37		37
	Sarcoma	36	37	73
	Myeloid Disorders	30		30
	Biliary tract	11		11
	Oral	11		11
	Total	3212	1869	5081

The Challenge: Large-scale data analysis in hybrid, multi cloud system

- Leverage on-premise HPC system and public cloud platforms
 - TCGA data is hosted on Google Cloud Platform (GCP)
 - ICGC data is hosted on Amazon Web Services (AWS)
 - Initial and subsequent analysis on the on-premise HPC cluster
- Use a workflow engine that supports multiple backend environments, thus avoiding reengineering of the workflow
- Minimize data transfer between the systems and avoid local storage issue.

Analysis of TCGA WGS on Google Cloud Platform

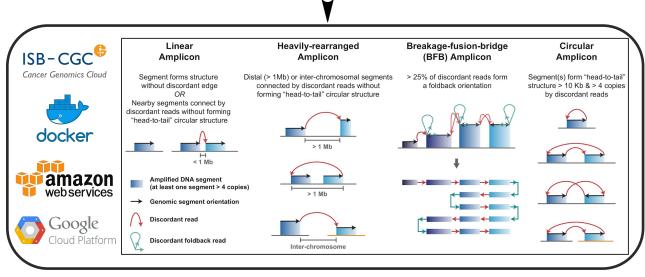
- ISB Cancer Genomics Cloud (ISB-CGC) hosts the TCGA data in the cloud
- Cromwell workflow was used.
- Co-localization of the compute and data for the computation.
- Scalable, short-lived batch analysis
- Google's Preemptible VMs to save costs (~90% discount)



Sandeep Namburi

Sheila Reynolds

ISB-CGC can be accessed at: www.isb-cgc.org


Analysis of ICGC WGS on Amazon Web Services

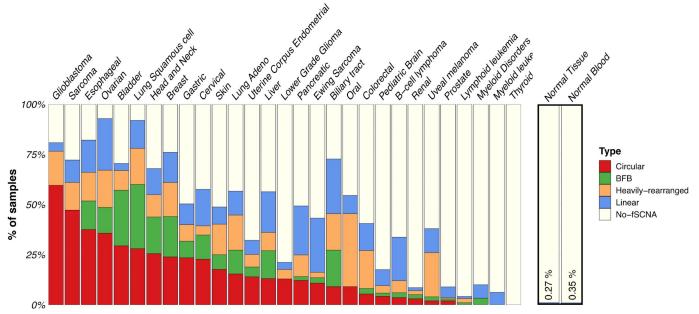
- ICGC data is hosted on Amazon Web Services (AWS).
- Cromwell workflow was used.
- Unlike the GCP preemptible VMs (lasting 24hours), spot instances have no such limit.
- Ability to auto-scale disks attached to an AWS instance.

We were able to predict ecDNAs and non-ecDNA types through clouds

Whole Genome Sequence from ~5,000 samples

In collaboration with UCSD, Stanford, Berlin Institute of Health

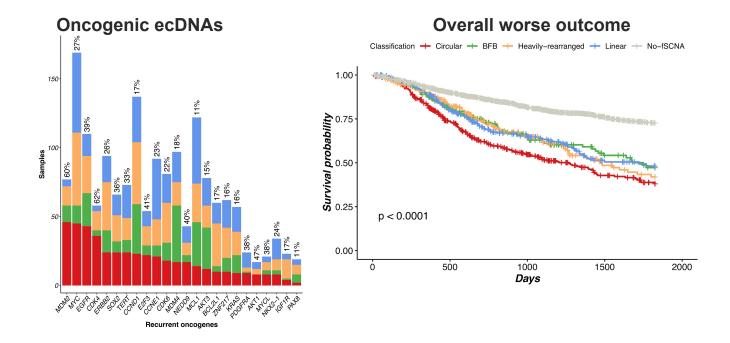
Computer Science, UCSD

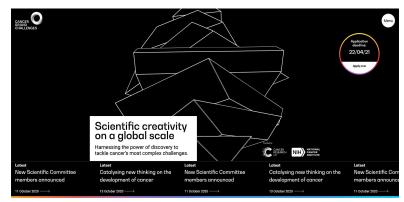


Nam-Phuong Nguyen

Jens Luebeck

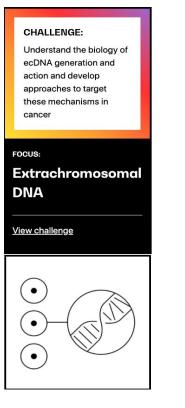
Kim et al, Nature Genetics, 2020


EcDNAs were found in 25 of 29 cancer types


- Higher frequencies in the most malignant forms of cancer, demonstrating that ecDNA plays a critical role in cancer.
- Almost none in normal
- The previous ecDNA incidence rate (1.4%) is wrong.

Kim et al, Nature Genetics, 2020

EcDNA tumors behave more aggressively, having an overall worse outcome.


On Oct. 2020, ecDNA was selected as the most important problem in cancer research by the global research community

NIH NATIONAL CANCER INSTITUTE

				1-800-4	-CANCER	Live Chat	Publications	Diction	ary			
ABOUT CANCER	CANCER TYPES	RESEARCH	GRANTS & TRAINING	NEWS & EVENTS	ABOUT N	CI search			a			
Home > Grants & Traini	ng > Research Grants						•	🖾 f 🎔	P			
RESEARCH GR	ANTS	Cancer	Grand Challer	nges								
Research Funding Opportunities	+	The National Cancer Institute (NCI) and Cancer Research UK (CRUK), the world's leading funders of cancer research, are partnering to fund the Cancer Grand Challenges (CGC) program. Cancer Grand Challenges will										
Cancer Grand Challer	iges	fund novel ideas by multidisciplinary research teams from around the world that offer the potential to advance										
Research Program Co	intacts	bold cancer re	search and improve outco	mes for people affect	ed by cance	r.						
Funding Strategy		flexibility and s competitive pr NCI and CRUK	Challenges is a global fun- scale to innovate and carry rocess designed to promot expect to fund around fou rry team being awarded ap	y out cutting-edge res te scientific creativity ur awards for each ro	earch. This p of the highe und of Cance	partnership fo st order. Thro er Grand Chall	sters a highly ugh this partne	ership,				
		The timeline fo	or the 2021 Challenge que	stions is listed below	and will be u	pdated regula	arly:					

https://www.cancer.gov/grants-training/grants-funding/cancer-grand-challenges https://cancergrandchallenges.org/

Summary

• Extrachromosomal DNAs

- EcDNAs contribute to intratumoral heterogeneity.
- EcDNA is operant in a large fraction of human cancers, contributing to the poor outcomes for patients.

• Cloud computing

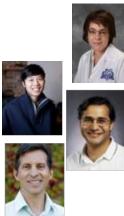
- Significant engineering needed to setup the resources on the cloud providers.
 - Fortunately, JAX has a cloud specialist.
- Workflow manager with multiple systems are helpful to avoid reengineering of the workflow, rather than directly using the native executors like AWS Batch or GCP Pipelines API.

Acknowledgements

All patients providing valuable samples for research.

ICB-CGC

- Sheila Reynolds
- David Pot
- William Longabaugh


Henry Ford Hospital

- Ana DeCarvalho
- Tom Mikkelsen

UCSD

- Nam Nguyen
- Vineet Bafna
- Paul Mischel

Funded by

Jackson lab

- Roel Verhaak
- Sandeep Namburi
- Jihe Liu
- Eun Hee Yi
- Kevin Johnson
- Floris Barthel
- Samirkumar Amin
- Kevin Anderson

Google

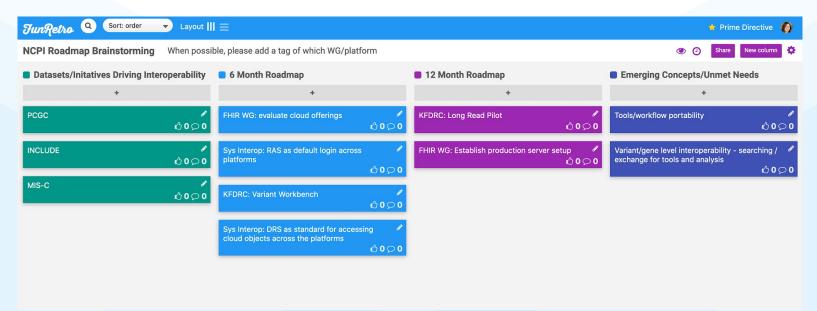
Cloud Platfor

- Amit Gujar
- Fred Varn

NIH Workshop on Cloud-Based Platforms Interoperability October 30th and November 2nd, 2020

Lunch Break

We will resume at 1:30 pm ET.


MORNING SESSION KEY MESSAGES

- 1. Awesome, impactful, accelerated science can *actually* happen by harnessing the multi-platform cloud setting!
- 2. Both "expert" users and "new" users are able to leverage the advantages of cloud platforms when supported.
- 3. Users still face "binaries" in decision making that limit their full potential for harnessing platforms/cloud:
 - a. Costs/platforms→ On Prem vs. Cloud (and which cloud?), where and from whom do I have my credits, how do I support "other" data (see b.) -- help with cost optimization.
 - b. Terra vs. SBG vs. ISB vs. "X" \rightarrow
 - i. What data do I have to move where since I not only am I accessing multiply hosted datasets, but have some of my own data, own cohorts, or other existing studies that I need to intersect with the cloud-based cohorts (relates to the multiple cohort creation processes users will engage when navigating interop).
 - c. CWL vs. WDL \rightarrow where should I either invest in transforming my pipelines or are the "right" combinations of multiple pipelines available? Is there a way not to be "locked in" by this?

Intro: Capturing Roadmap Ideas

Utilizing Fun Retro

Can start putting ideas down during WG updates Hour interactive session at the end of the day

NIH Workshop on Cloud-Based Platforms Interoperability October 30th and November 2nd, 2020

Working Group Updates: NIH Coordination

Valentina Di Francesco & Ken Wiley NHGRI/AnVIL

NHGRI AnVIL Valentina Di Francesco (Co-Chair) Ken Wiley (Co-Chair) Natalie Kucher

NHLBI BioData Catalyst

Jon KaltmanAlastair ThomsonChip Schwartz

CF GMKF

- •Valerie Cotton
- •James Coulombe
- •Huiqing Li

NCI CRDC

- •Tanja Davidsen
- •Allen Dearry
- •Vivian Ota-Wang
- •Erika Kim
- •Zhining Wang
- Ian Fore

NIH CFDE

- Lora Kutkat
- •Haluk Resat
- •Chris Kinsinger

- •Serve as the NIH Governance body for NCPI
- •Stewardship of the NCPI WGs activities
- •Liaison with NIH ODSS and other parts of the NIH

•Ratified the NCPI Interoperability Principles proposed by the Community Governance WG

•Aiming to balance the NCPI's goals and priorities versus IC-specific platform goals and priorities

•Addressing specific issues that arise, such as those related to the NCPI's developers access to the resources for testing platforms' interoperability tools

•Forum for ICs reps interactions and information sharing

Launched five trans-NIH WGs

NCPI All Hands Workshops

- •1st kick-off workshop hosted in Oct 2019 by NHLBI/BDC at RENCI
- •Internal "Train your Colleague" workshop organized by the NHGRI/AnVIL and the Training WG in March 2020 (*virtual*)
- •2nd workshop hosted in April 2020 by NHGRI/AnVIL (virtual)
- •3rd workshop hosted in Oct 2020 by CF/Kids First (virtual)

Liaison with NIH Constituents

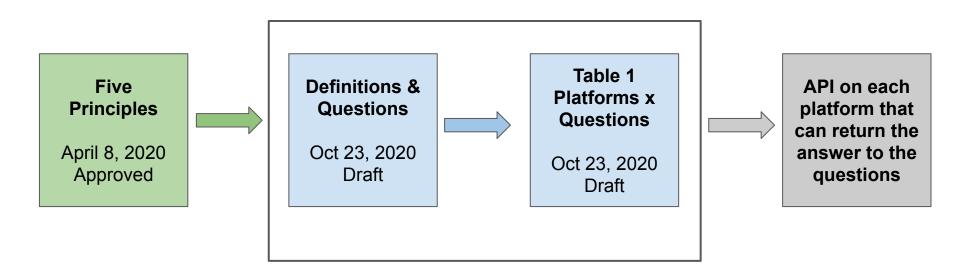
- Align NCPI efforts with the goals of the NIH Strategic Plan for Data Science
 - Facilitate collaboration with the NIH RAS Project
 - Leverage of ODSS supplement funds
 - Leveraged the 2020 ODSS Data Scholar program
- Interaction with the NIH Data Access Policy groups
- Information dissemination across the NIH

- Identify and agree upon next year's priorities and milestones
- Implement interoperability principles
- Host NCPI all hands workshops every 6 months
- Offer training opportunities for outside investigators
- Pursue additional funding support
- Continue collaboration with RAS
- Improve visibility across the NIH and share best practices for platforms interoperability across NIH
- Solidify collaboration with GA4GH work streams

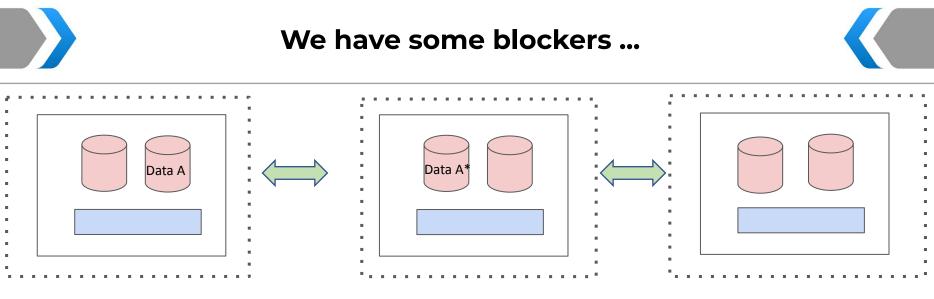
NIH Workshop on Cloud-Based Platforms Interoperability October 30th and November 2nd, 2020

Working Group Updates: Community / Governance

Bob Grossman, Professor, University of Chicago


Stan Ahalt, Director, RENCI

Community / Governance WG - Overview



focus since the last meeting

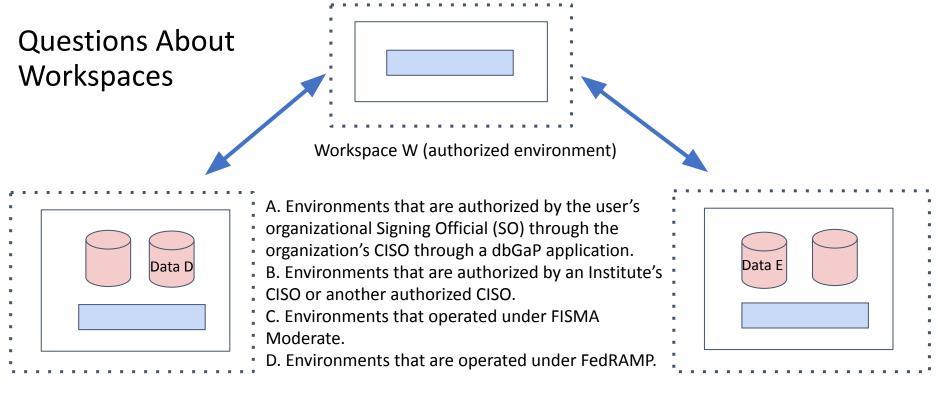
- <u>Five Principles</u> (Version C) for Interoperating Data Platforms was approved on April 8, 2020
- These principles were not precise enough to determine easily whether a platform was following them or not
 - Three of the questions are the most relevant to interop between cloud platforms
 - We have drafted a white paper that provides definitions and a series of questions that each platform can answer that provides enough specificity so that a platform's adherence can be determined
 - Towards Characterizing <u>Cloud Platform Interoperability</u> (October 23, 2020)
 - Short name C2PI White Paper

Platform A boundary

Platform B boundary *copy or DRS identifiers Platform C boundary

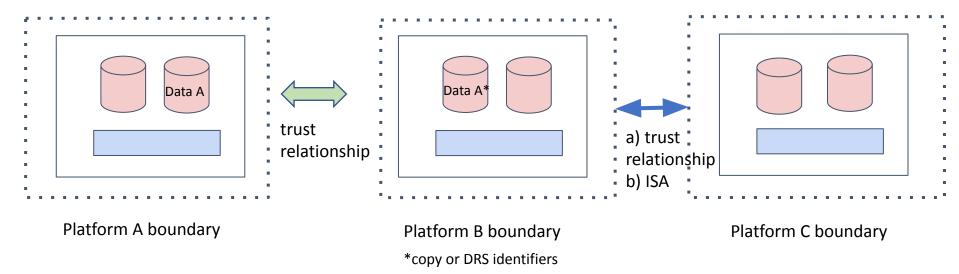
In general, platforms would like to access other platforms data, but are hesitant to let other platforms access their data.

What type of agreement are required for a User in Platform B or C to access data that they are authorized to access?


- **Trust** if two platforms trust each other they should be able to exchange data
- Authorized environment -
 - New concept in our C2PI White Paper
 - Example, with dbGaP the organization's IT Director through the organization's
 SO authorizes an environment for data downloaded from dbGaP
 - Example, for a cloud platform, the Institute's CISO can authorize an environment, say by approving an ATO for FISMA Moderate environment
- Authorized Environment Principle authorize environments and authorize users and trust the authorizations

- What categories of data?
 - open, controlled access, sensitive low, sensitive medium, sensitive high
- What are the requirements to authorize a user?
 - InCommon, ORCID, RAS, dbGaP, platform white list
- What are the requirements to authorize an environment?
- What are the requirements to trust another platform?

- For a particular category of data
- Meta-principle: an authorized user can access data in authorized environment (for an appropriate category of data).


	dbGaP Model	GDC Model	CRDC	BDC	AnVIL	KF
Status	reviewed	reviewed	under review	reviewed	reviewed	reviewed
User Auth	dbGaP	dbGaP	dbGaP	dbGaP & white list	dbGaP, white list, DUOS	dbGaP & white list
Environment Authorization	Signing Official who has the legal authority to attest to the organization's CIO's data security assessment "dbGaP Model"	Signing Official who has the legal authority to attest to the organization's CIO's data security assessment "dbGaP Model"	SBG, Terra & ISB are authorized environments; need to get list of other authorized environments	Institute CISO	Broad CISO approves ISAs for connecting to AnVIL; and, AnVIL uses dbGaP model for data that is downloaded	Research organization's IT Director
Data access (aka "egress") by another cloud platform	Any platforms authorized by researcher's organization (via dbGaP) "dbGaP Model"	Any platforms authorized by researcher's organization (via dbGaP) "dbGaP Model"	to be determined	Data cannot leave BDC Platform.	Restricted to platforms with an ISA with AnVIL	Any platforms authorized by researcher's org. (via dbGaP)
Data Egress - "download"	Any platforms authorized by researcher's organization (via dbGaP) "dbGaP Model"	Any platforms authorized by researcher's organization . (via dbGaP) "dbGaP Model"	Any platforms authorized by researcher's org. (via dbGaP)	Data cannot leave BDC Platform.	dbGaP model for downloaded data	Any platforms authorized by researcher's org. (via dbGaP)
ΑΡΙ	archive can be downloaded, but no API to data	All data is available via an API	Data objects available via API; CCDH and CDA will provide access to clinical data	API within BDC for data objects and harmonized data (in the future APIs for multiple data models); PicSURE API for clinical/Phen.	API within AnVIL for data objects and harmonized data (in the future APIs for multiple data models)	All data is available via Gen3/portal APIs. Gen3 for genomic data. FHIR API for clin/phen Q1 2021.
Trust relationships	NA	open to any auth. env.	need to determine	need to determine	need to determine	need to determine

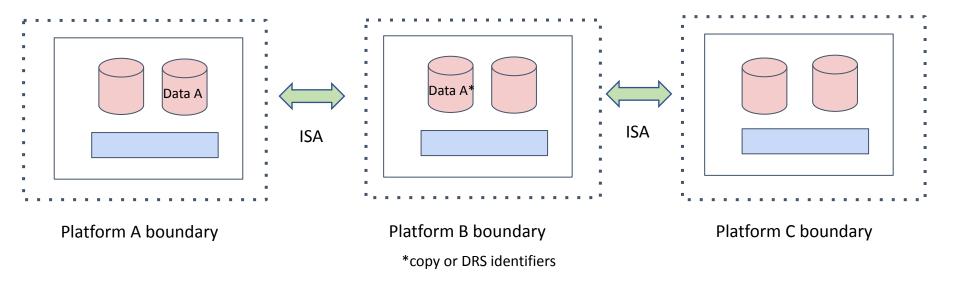
Platform A boundary Note that as a special case Workspace W may within Platform C boundary the security boundary of Platform A, Platform C or both.

Questions: Can an authorized user in Workspace C access Data D from Platform A and data E from Platform B if Workspace W is an authorized environment of Type A? Of Type B? Of Type C? Of Type D?

Questions About Data Access Between Cloud Platforms

Question: Can an authorized user in platform C access Data A from Platform B?

Question: Can an auth. user in platform C access Data A from Platform B, if Platforms A and C have a trust relationship? Question: Can an auth. user in platform C access Data A from Platform B, if Platforms B and C have a trust relationship? Question: Can an authorized user in an authorized workspace in Platform C analyze Data A from Platform B? Question: Can an authorized user in platform C access Data A from Platform B, if Platforms B and C have a trust relationship and platforms A & C have a trust relationship?


- 1. Complete the C2PI White Paper, including Table 1
- 2. Define an API so that cloud platforms can self-attest how they answer the C2PI Questions
- 3. Work towards approving a policy for the commons in NCPI that an authorized user can access data in authorized environment (for an appropriate category of data).
- 4. Work towards getting some of the NCPI platforms to trust each other

Backup Slides

Questions About ISAs

Question: Can an authorized user in platform C access Data A from Platform B?

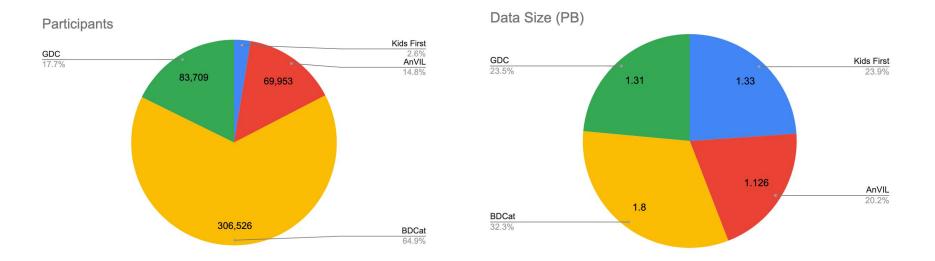
Question: Can an authorized user in platform C access Data A from Platform B, if Platforms B and C have a trust relationship?

Question: Can an authorized user in an authorized workspace in Platform C analyze Data A from Platform B?

NIH Workshop on Cloud-Based Platforms Interoperability October 30th and November 2nd, 2020

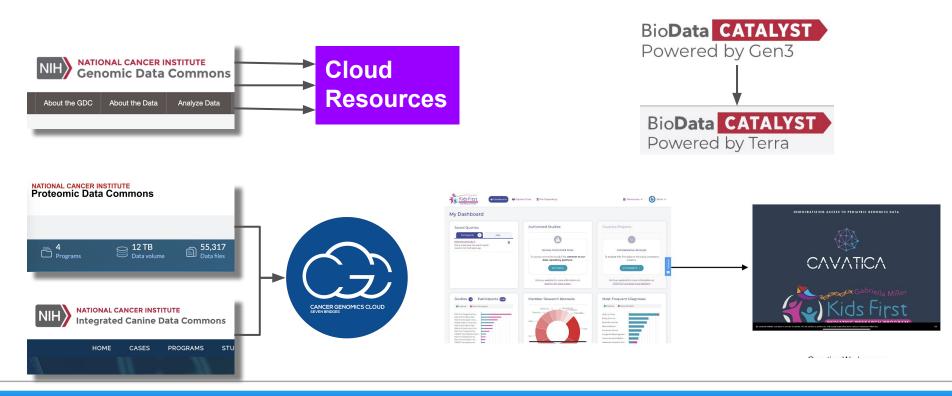
Working Group Updates: Systems Interoperation

Brian O'Connor Broad & Jack DiGiovanna Seven Bridges



Systems Interoperation WG - Motivation

Researchers want to access data across ICs/stacks.



Aggregation of data across these IC stacks is huge ~6PB

Systems Interoperation WG - Motivation

Data portals connect (intra-IC) with analysis systems (workspaces)

The group's <u>Charter</u> establishes the group's mission, members/teams, high-level scientific and technical goals, and timeline.

The group will spearhead <u>technical improvements</u> to cloud "stacks" created by the Common Fund, NCI, NHGRI, and NHLBI that enable improved interoperability. We will <u>demonstrate progress</u> in <u>realistic researcher use cases</u> every <u>6 months</u>.

Please join if you are interested.

Immediately looked for scientific "driver projects"

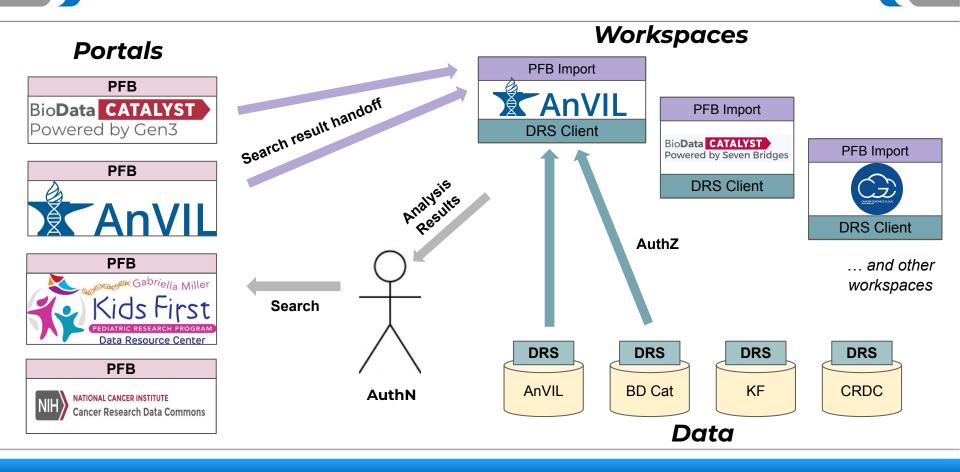
Our WG quickly identified 8 interesting researcher use cases that required interoperability both within and between ICs:

- CRDC + AnVIL (n=2);
- BioData Catalyst + Kids First (n=3)
- AnVIL + Kids First (n=1)
- BioData Catalyst + Kids First + AnVIL (n=2)

Standardized Handoff Mechanism V

Standardized Data Access Methods

Avoiding Egress and Data Locality Costs V-ish



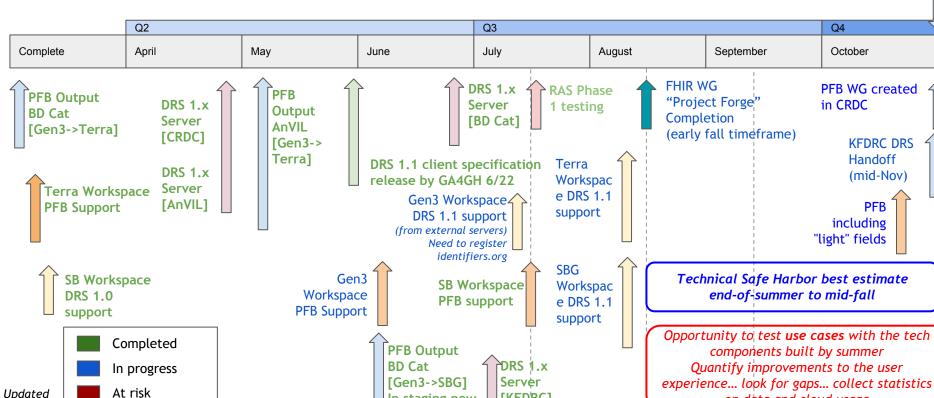
Unified Authentication/Authorization - more progress than expected

Common Metadata Model Between Systems - progress on "light" solution

Coordinated Project Work Plans and Technical Timelines V-ish

Systems Interoperation WG - Technical 1st Year Vision

Systems Interoperation Timeline - April 2020


Given the technical gaps, what might a timeline be for filling these?

Systems Interoperation Timeline - Q3 2020

There has been a green wave!

20200821

In staging now

[KFDRC]

(working)

NCPI meeting

on data and cloud usage

Systems Interoperation WG - 2020 Accomplishments

Collectively, we have achieved improved interoperability in 2020 across multiple systems through **PFB**, **GA4GH DRS**, and **GA4GH Passports**.

2020 Results

• Search Result Handoff: PFB

2 portals ~417K subjects accessible

• Data Access: DRS 1.1

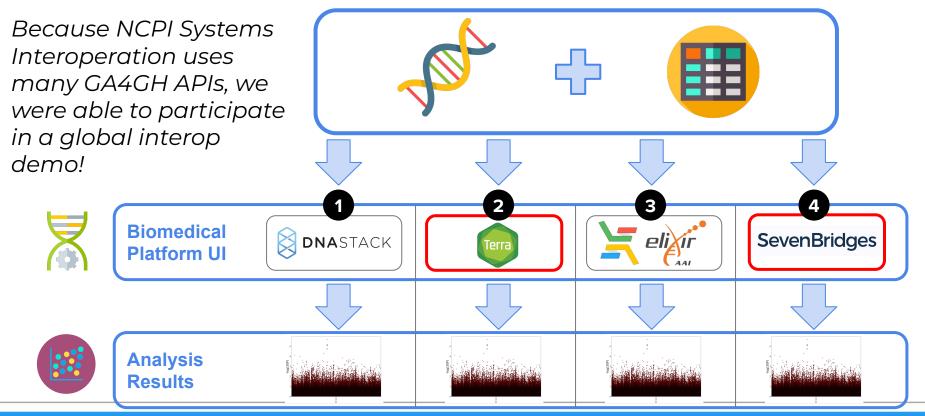
4 DRS Servers ~6PB of data

RAS

• Auth: RAS for AuthN

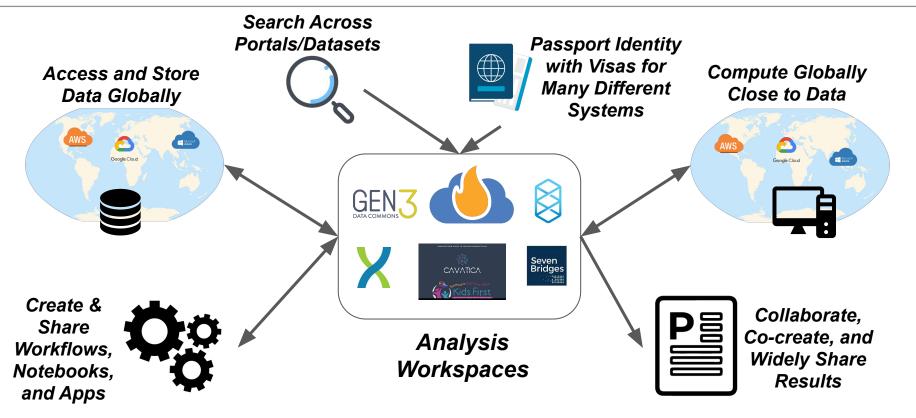
Supported Platforms

- The NHGRI AnVIL and NHGRI BioData Catalyst portals both support handoff of search results to workspaces (Terra, Gen3, SBG)
- We have data accessible on AnVIL,
 BDCat, CRDC, and Kids First via
 DRS 1.1 support
- GA4GH Passports are in use by RAS and support visas from dbGaP made accessible by Gen3.



NCPI Systems Interoperability Demo

NCPI 2020 Fall Workshop 2020-10-30 Jack DiGiovanna (SB) & Brian O'Connor (Broad)


Systems Interoperation & Global Efforts

GA4GH also recently demonstrated systems using API standards to interoperate

Systems Interoperation Long Term Vision

<u> Technical Challenges (next 6 months+):</u>

- **Production*:** How do we transition our work to more production systems?
- **Auth*:** How to leverage RAS & passports for authorization going forward?
- Search/Discovery*: How to find data across portals e.g. FHIR, CDA, etc?
- **Common Metadata Models*:** How portals and resources can structure metadata consistently?
- Workflows, Data Locality and Egress*: How to compute in place automatically, across clouds, avoiding egress?
- <u>And more... roadmapping later today</u>

* key potential areas for future collaboration

Policy Challenges (next 6 months+):

- Policy: Complex, heterogeneous, & evolving landscape, remains a blocker
- Adoption: Engagement and outreach to drive adoption of these standards and drive new scientific analyses.
- **Tool Availability/Portability**: Leveraging different workspaces for different parts of analysis, finding the equivalent tool for your workflow language

• **Reproducibility / Knowledge Life cycle**: Strategies for expiring docker images, target support timeframe for a tool

NIH Workshop on Cloud-Based Platforms Interoperability October 30th and November 2nd, 2020

Working Group Updates: FHIR

Allison Heath, PhD Director of Technology @ D3b, CHOP Robert Carroll, PhD Assistant Professor, VUMC



- First Seven Months of the WG
 - Project Forge
 - Development Infrastructure
- Demo
 - Data Dashboard
 - Exploration and filtering of data
 - Linkage to Monarch APIs
- Roadmap
 - Expansion of data covered
 - Tool support for data
 - Deploy limited production implementation

Seven Months Ago...

ADD IN CONTRACTION OF THE ADDRINGS

Getting Started

2020-04-03: Collaborative Kickoff Project ("Project Forge")

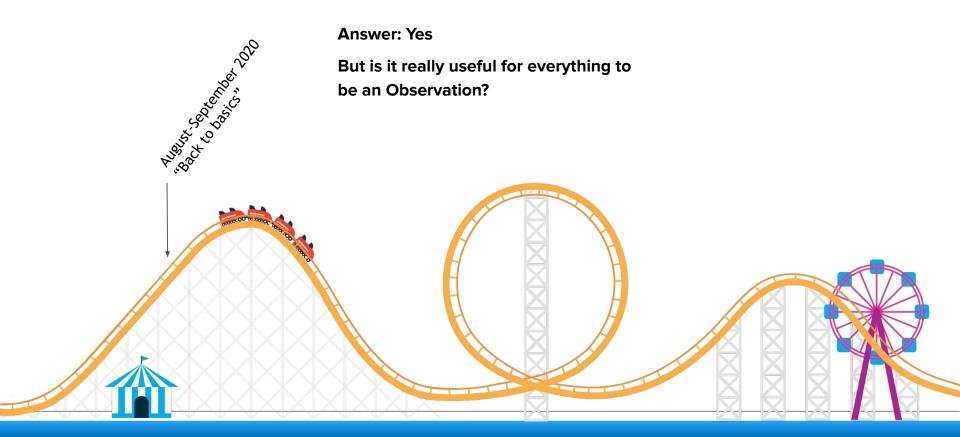
🔥 FHIR 101 - A Practical Guide

Hello there!

If any of the following statements applies or questions below apply to you, then this guide is for you :)

- 🏘 I've heard the term FHIR. But is it a server? A database? A data model? Rapid oxidation?
- 🙀 I understand what FHIR is but have no idea how to begin implementing it!
- 😕 I tried reading through HL7 FHIR, but I am still confused
- 🧐 How does FHIR modeling compare to relational database design?

What is FHIR? Initial data: PCGC and CMG



Setup Development Infrastructure

2020-07-14: ncpi-api-fhir-service-dev.kidsfirstdrc.org FHIR Data Dashboard Ontologies Server -Resources **Resource Types** 199 total July 200 see the top Condition Base type: Condit Observation DocumentReference \odot DR 46.681 3.396 2.63 ResearchSubject Patient Base type: Patien Specimer Д RS 2 2,229 2,208

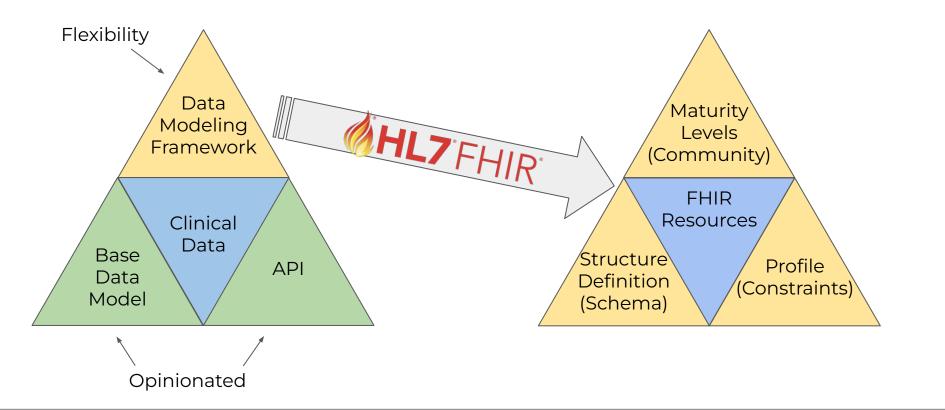
Can PCGC and CMG data be loaded in base FHIR?

Initial Set of Profiles

October 200 Oberotici	Referencing DRS Objects Model: New request #46 by allisonheath was closed yesterday			7 4
or of the stringer of the stri	Update obsolete info in Contributing section on README bug #44 by znatty22 was closed 5 days ago	រ៉ូ1្ហ 1		Ç 1
O' Mer yot	Profile Disease Model: New request #36 by torstees was closed 3 days ago	រូំ ្ហ 1		₽ 8
	Profile Human Phenotype AnVIL Kids First DRC Model: Ready for development #34 by torstees was closed 6 days ago	រ៉ូ1្ហ 1		7 2
and CONTROL OF THE OWNER	Profile Family Relationship Model: New request #33 by torstees was closed 20 days ago		-0	Ç 1
	Profile Specimen to include `DocumentReference` Model: New request #31 by bwalsh was closed 16 days ago		-0	Ç 2
	 Profile ResearchSubject to include DocumentReferences Model: New request #30 by bwalsh was closed 16 days ago 		-0	ÇJ 2
	NCPI Family Relationship AnVIL (Kids First DRC) Model: Ready for development #21 by torstees was closed 8 days ago	រូក្ល 1		ÇJ 11

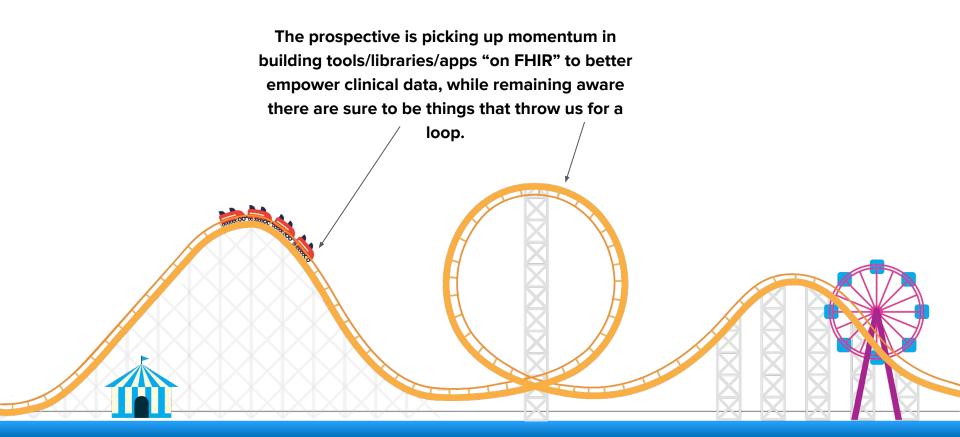
- <u>"Project Forge" Implementation Guide</u>
- <u>React App</u> for browsing FHIR data
- Dash App for phenotype distribution exploration
- Shiny App for Monarch API gene search

No Really - What is FHIR?

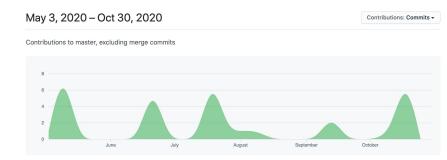

FHIR is a *framework* for clinical data interoperability.

We use frameworks all the time when building platforms. Why?

Good frameworks are opinionated where it matters to prevent effort in (re)solving recurring problems, but flexible where needed for creating solutions for new problems.



In retrospect - the climb was understanding the FHIR framework, it's opinions, advantages, disadvantages of using it across NCPI



- Document current best practices and move from Project Forge Model to NCPI FHIR Model
 - Cancer research
 - Clinical genomics
 - <Your use case here>
- Identify key unmet needs and use cases for new tools that leverage FHIR as a framework for clinical data
 - Intake
 - Management
 - Availability
 - Interoperability
- Making these data, APIs and tools available to empower researchers is a key objective
- Community Engagement

S

Attendees of the FHIR WG Calls across all of the platforms and dbGaP!

Special thanks for the demos today:

AnVIL

- Brian Walsh
- Kristin Wuichet
- Eric Torstenson
- Katie Banasiewicz

Kids First DRC

- Meen Chul Kim
- Nick Van Kuren
- Shahim Essaid
- Natasha Singh
- Avi Kelman
- Alex Lubneuski

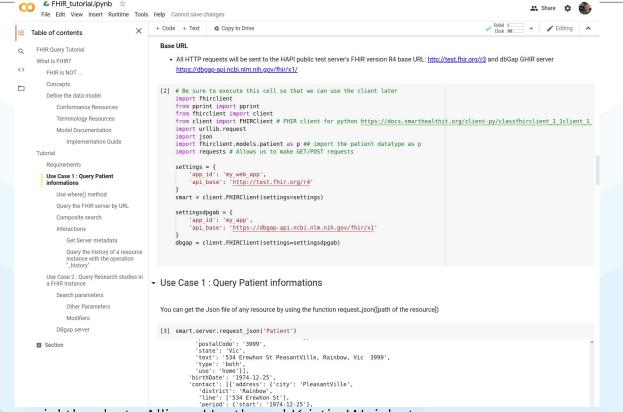
Working Group Updates: Outreach and Training

Anton Nekrutenko

Professor, Penn State University PD, galaxyproject.org

Ashok Krishnamurthy RENCI UNC, Chapel Hill

Outreach and Training WG



Goals of the working group

- Enable "cross-pollination" between the four NCPI projects by organizing regular NCPI Workshops
- Development and maintenance of the NCPI Portal
- Providing a catalogue of datasets available through each platform via NCPI Global Data Dashboard
- Providing a starting location for accessing training and outreach materials being developed and maintained by each platform as well as commonly used resources such as FHIR

Generic FHIR tutorial (based on Kids First DRC example; http://bit.ly/fhir_nb)

Delphine LaRiviere | special thanks to Allison Heath and Kristin Wuichet

NCPI Global Data Dashboard (a bird's eye view of all data)

NCPI Overview Datasets AnVIL Search Summary Platform Studies Subjects AnVIL 21 59.325 **BioData Catalyst** 95 421,497 4 3,523 Kids First Data Resource Center Cancer Research Data Commons 16 86,749 136 571,094

Search Results

Platform	dbGap Id	Title	Diseases	Data Types	Consent Codes	Subjects
AnVIL	phs001272.v1.p1	Broad Institute Center for Mendelian Genomics	Genetic Diseases, Inborn; Bardet-Biedl Syndrome	Genotype, SNP/CNV Genotypes (NGS)	HMB-MDS, GRU, DS-KRD- RD, DS-NIC-EMP-LENF	1,031
AnVIL	phs001913.v1.p1	CCDG - Cardiovascular: eMERGE - Northwestern Cohort	Cardiovascular Diseases		GRU-IRB	277
AnVIL	phs001502.v1.p1	CCDG-Cardiovascular: University of Pennsylvania Cohort	Cardiovascular Diseases	Genotype, Legacy Genotypes, SNP Genotypes (NGS)	HMB-IRB-PUB	1,373
AnVIL	phs001259.v1.p1	CCDG CVD: VIRGO - Variation in Recover-Role of Gender on Outcomes of Young Acute Myocardial Infarction (AMI) Patients	Myocardial Infarction; Inferior Wall Myocardial	Genotype, SNP Genotypes (NGS)	DS-CARD-MDS-GSO	2,149
AnVIL	phs001894.v1.p1	CCDG-Neuropsychiatric: Autism- Genetics of Human Developmental Brain Disorders	Autism Spectrum Disorder		DS-EAC-PUB-GSO	724
AnVIL	phs001676.v1.p1	CCDG- Neuropsychiatric: Autism - Simons Simplex Collection (SSC)	Autism Spectrum Disorder		DS-AONDD-IRB	9,201
AnVIL	phs001740.v1.p1	CCDG- Neuropsychiatric: Autism- Study of Autism Genetics Exploration (SAGE)	Autism Spectrum Disorder	Genotype, SNP/CNV Genotypes (NGS)	DS-ASD-RD-IRB	580
AnVIL	phs001741.v1.p1	CCDG- Neuropsychiatric: Autism- The Autism Simplex Collection	Autism Spectrum	Genotype, SNP/CNV	DS-ASD-IRB	905

David Rogers / Kevin Osborne | special thanks to Garrett Rupp (UChicago) and Michael Feolo (NCBI/dbGaP)

- Derived from a static spreadsheet at this time
- Uses dbGaP FTP/XML interface and dbGaP FHIR API for additional info
- dbGaP FHIR team is modifying APIs and is pleasure to work with
- Planning to use GA4GH Discovery API in the future

David Rogers | special thanks to Garrett Rupp (UChicago) and Michael Feolo (NCBI/dbGaP)

A Unified tutorial dashboard (a landing page for all NCPI tutorials)

Core

These are the core, foundational topics for learning how to use Galaxy.

Lesson	Slides	Hands-on	Input dataset	Workflows	Galaxy tour	Galaxy instances
Introduction to Galaxy						
A short introduction to Galaxy		<u>.</u> •	Ø	*		• •
From peaks to genes		<u>.</u> •	Ø	<		• •
Galaxy 101		<u> </u>	Ø	<		• •
Galaxy 101 for everyone		₽ •	Ø	<		• •
Introduction to Genomics and Galaxy		P •		<		• -
NGS data logistics		<u>.</u> -				
Options for using Galaxy	a					
Infrastructure						

Galaxy Training Infrastructure

A Unified tutorial dashboard (a landing page for all NCPI tutorials)

Tutorial	AnVIL	CRDC	KF	BDC
Calling variants	\checkmark		\checkmark	
Cleaning variant calls				
Interpreting variants				

A mockup of the training dashboard (will be housed at the NCPI portal)

Quick Break

We will resume at 3:10 pm ET.

Group Discussion Drafting a Road Map

Allison Heath Children's Hospital of Philadelphia Brian O'Connor Broad Institute

Other Template Slides

Feel Free to Copy/Paste as Needed

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Compared Subject #1

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Compared Subject #2

Compared Subject #1

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Compared Subject #2